Estimation of forest structural parameters based on stand structure response and PALSAR data
-
摘要: 为提高ALOS PALSAR数据估测森林结构参数的精度,引入代表林分结构复杂程度的调整熵值(ENTadj)参与估测,以消除林分结构对雷达后向散射系数的干扰。首先利用野外样地实测的树高计算林分的调整熵值,与Landsat8 OLI第6波段建立线性回归模型,获得基于像元的调整熵值。一般森林结构参数与ALOS PALSAR后向散射系数之间的关系可以用对数模型模拟。引入基于像元的调整熵值作为自变量对原始对数模型进行改进,分别对林分平均高、林分平均胸径、林分蓄积量建立了3种形式的改进模型。利用原始模型和改进模型分别对杉木林、马尾松林、阔叶林和针阔混交林的上述森林结构参数进行估测。最后比较模型拟合精度筛选出3项森林结构参数在各类森林中的最优模型,共计12个。结果表明:考虑林分结构干扰后,雷达估测森林结构参数模型的拟合精度R2均得到了提高。马尾松林各项森林结构参数模型的拟合度提高最大。精度检验结果表明:林分平均高估测精度(RMSE为0.74~2.51 m)、林分平均胸径估测精度(RMSE为2.61~5.61 cm)和林分蓄积量估测精度(RMSE为21.71~30.92 m3/hm2)都比较理想。本研究探讨了林分结构信息应用于合成孔径雷达后向散射系数反演森林结构参数方面的潜力,提高了光学数据结合雷达数据估算森林结构参数的能力。
-
关键词:
- 林分结构 /
- ALOS PALSAR /
- Landsat8 OLI /
- 树高 /
- 胸径 /
- 蓄积量 /
- 杉木 /
- 马尾松
Abstract: To improve the estimation accuracy of forest structural parameters with ALOS PALSAR data, we introduced adjusted entropy (ENTadj) which represents the complexity of stand structure for the estimation. Thus, the interference of radar backscattering coefficient caused by stand structure could be eliminated. Firstly, the ENTadj of stand was defined by the measured tree heights in sample plots of the field. And then, the ENTadj based on pixels was calculated by linear regression model established with the integration of the ENTadj of stand and Landsat 8 OLI band 6. Commonly, the relationship between stand structural parameters and ALOS PALSAR backscattering coefficient could be simulated by a logarithm regression model. In this research, ENTadj based on pixel was introduced as a new independent variable to improve the original logarithm model. Three types of improved models were established for stand mean tree height, stand mean DBH and stand stock volume respectively. The original model and three improved models were used to estimate the above stand structural parameters for Cunninghamia lanceolata stand, Pinus massoniana stand, broadleaf stand and mixed stand. Ultimately, optimal estimating models for each stand structural parameter in the four types of stands were selected by comparing R2 (coefficient of determination) with totally 12 results. The results showed that the R2 of models in radar estimating stand structural parameters increased after considering the influence of stand structure, and the R2 of entire optimal stand models for P. massoniana stand increased the most. The results of accuracy examination revealed that there were desired precisions for estimating tree height (RMSE: 0.74-2.51 m), DBH (RMSE: 2.61-5.61 cm) and stock volume (RMSE: 21.71-30.92 m3/ha). This study explored the potential of applying stand structure information in forest structural parameters, and increased the ability to estimate the forest structural parameters by combining the optical and radar remote sensing data. -
-
[1] WANG X N, XU T S, LI Y. Estimating forest volume in hilly regions with the ALOS PALSAR model's dual polarization data [J]. Journal of Zhejiang A&F University,2012, 29(5): 667-670.
[1] LU D S, CHEN Q, WANG G X, et al. Aboveground forest biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates[J]. International Journal of Forestry Research,2012,doi: 10.1155/2012/436537.[2014-03-01]http:∥www.hindawi.com/journals/ijfr/2012/436537/.
[2] WANG X Y, GUO Y G, HE J. Estimation of above-ground biomass of grassland based on multi-source remote sensing data[J]. Transactions of the Chinese Society of Agricultural Engineering,2014,30(11):159-166.
[2] 王晓宁,徐天蜀,李毅.利用ALOS PALSAR双极化数据估测山区森林蓄积量模型[J]. 浙江农林大学学报,2012,29(5):667-670. [3] WU D, FAN W Y. Forest canopy height estimation using LiDAR and optical multi-angler data[J]. Journal of Beijing Forestry University,2014,36(4):8-15.
[3] 王新云,郭艺歌,何杰. 基于多源遥感数据的草地生物量估算方法[J]. 农业工程学报,2014,30(11):159-166. [4] CHEN E X. Development of forest biomass estimation using SAR data [J].World Forest Research,1999,12(6):18-23.
[4] 吴迪,范文义. 激光雷达协同多角度光学遥感数据反演树高[J]. 北京林业大学学报,2014,36(4):8-15. [5] 陈尔学. 合成孔径雷达森林生物量估测研究进展[J]. 世界林业研究,1999,12(6):18-23. [5] XIAO W S, WANG X Q, LING F L. The application of ALOS PALSAR data on mangrove forest extraction[J].Remote Sensing Technology and Application,2010,25(1):91-96.
[6] 肖伟山,王小钦,凌飞龙. ALOS PALSAR数据在漳江口红树林提取中的应用[J]. 遥感技术与应用,2010,25(1):91-96. [6] YANG Y T, LI Z Y, CHEN E X, et al. Forest volume estimation method based on ALOS PALSAR data[J]. Forest Resources Management,2010(1): 113-117.
[7] LI W G, WANG J H, ZHAO C J, et al. Estimating rice yield based on quantitative remote sensing inversion and growth model coupling[J]. Transactions of the Chinese Society of Agricultural Engineering,2008,24(7):128-131.
[7] MCDONALD K, DOBSON M C, ULABY F T. Using mimics to model L-band multiangle and multitemporal backscatter from a walnut orchard [J]. IEEE Transactions on Geoscience and Remote Sensing,1990,28(4):477-491.
[8] VAN ZYL J J. The effect of topography on radar scattering from vegetated areas [J]. IEEE Transactions on Geoscience and Remote Sensing,1993,31(1):153-160.
[8] WANG C L, NIU Z, GUO Z X, et al. A study on forest biophysical parameter impact on radar signature and extraction of forest stock volume by means of Radarsat-SAR [J]. Remote Sensing for Land & Resources,2005(2):24-28.
[9] 杨永恬,李增元,陈尔学,等. 基于ALOS PALSAR数据的森林蓄积量估测技术研究[J]. 林业资源管理,2010(1): 113-117. [10] CASTEL T, BEAUDOIN A, STACH N, et al. Sensitivity of space-borne SAR data to forest parameters over sloping terrain: theory and experiment [J]. International Journal of Remote Sensing,2001,22(12):2351-2376.
[11] IMHOFF M L. Radar backscatter and biomass saturation: ramifications for global biomass inventory [J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(2):511-518.
[12] SMITH-JONFORSEN G,FOLKESSON K,HALLBERG B,et al. Effects of forest biomass and sand consolidation on P-Band backscatter [J]. IEEE Geoscience and Remote Sensing Letters,2007,4(4):669-673.
[13] LUCAS R, ARMSTON J, FAIRFAX R, et al. An evaluation of the ALOS PALSAR L-band backscatter—above ground biomass relationship Queensland, Australia: impacts of surface moisture condition and vegetation structure [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,2010,3(4):576-593.
[14] 李卫国,王纪华,赵春江,等. 基于定量遥感反演与生长模型耦合的水稻产量估测研究[J]. 农业工程学报,2008,24(7):128-131. [15] SANTOS J R, FREITAS C C, ARAUJO L S, et al. Airborne P-band SAR applied to the above ground biomass studies in the Brazilian tropical rainforest [J]. Remote Sensing of Environment,2003,87(4):482-493.
[16] ROSENQVIST A,SHIMADA M,ITO N,et al. ALOS PALSAR: a pathfinder mission for global-scale monitoring of the environment [J]. IEEE Transactions on Geoscience and Remote Sensing,2007,45(11):3307-3316.
[17] LU D S. Integration of vegetation inventory data and Landsat TM image for vegetation classification in the western Brazilian Amazon [J]. Forest Ecology and Management,2005,213(1-3):369-383.
[18] DOBSON M C, ULABY F T, LETOAN T, et al. Dependence of radar backscatter on coniferous forest biomass [J]. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2):412-415.
[19] RANSON K J, SAATEHI S, SUN G Q. Boreal forest ecosystem characterization with SIR-C/XSAR [J]. IEEE Transactions on Geoscience and Remote Sensing,1995,33(4):867-876.
[20] 王臣立,牛铮,郭治兴,等. Radarsat SAR的森林生物物理参数信号响应及其蓄积量估测[J]. 国土资源遥感,2005(2):24-28. -
期刊类型引用(6)
1. 冯林艳,周火艳,赵晓迪. 乌兰布和沙漠两种植物的分布格局及其变化. 南京林业大学学报(自然科学版). 2024(01): 155-160 . 百度学术
2. 曾红,徐永艳,邵琳亚,闻永慧,夏小丽,汪琼. 4种植物叶片浸提液成分分析及其对珊瑚樱种子萌发的影响. 西南林业大学学报(自然科学). 2023(04): 39-46 . 百度学术
3. 马光宗,徐高峰,杨韶松,杨云海,张付斗,温丽娜,陶琼,申时才,叶敏. 甘薯提取物对3种杂草种子萌发和幼苗生长的化感作用. 西南农业学报. 2022(06): 1295-1302 . 百度学术
4. 路文杰,佛芒芒,肖毅,王永新,杜利霞,钟华,赵祥,董宽虎. 草地植物凋落物浸提液对根际微生物碳源利用的影响. 中国草地学报. 2021(06): 35-42 . 百度学术
5. 张林媚,刘姝玲,郭彩云. 立地条件对榆林沙区樟子松嫁接红松生长的影响. 林业科技通讯. 2021(11): 32-37 . 百度学术
6. 王方琳,尉秋实,柴成武,王理德,张德魁,王昱淇,王飞,胡小柯. 沙蒿(Artemisia desertorum)浸提液对自身种子萌发与幼苗生长的化感作用. 中国沙漠. 2021(06): 21-28 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 1335
- HTML全文浏览量: 107
- PDF下载量: 27
- 被引次数: 9