高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

花青素合成调节基因B1/C1转化东方百合‘索邦’的研究

崔祺 杜运鹏 高雪 贾桂霞

崔祺, 杜运鹏, 魏, 迟, 高雪, 贾桂霞. 花青素合成调节基因B1/C1转化东方百合‘索邦’的研究[J]. 北京林业大学学报, 2015, 37(11): 100-108. doi: 10.13332/j.1000-1522.20140414
引用本文: 崔祺, 杜运鹏, 魏, 迟, 高雪, 贾桂霞. 花青素合成调节基因B1/C1转化东方百合‘索邦’的研究[J]. 北京林业大学学报, 2015, 37(11): 100-108. doi: 10.13332/j.1000-1522.20140414
CUI Qi, DU Yun-peng, WEI Chi, GAO Xue, JIA Gui-xia, .. Transformation of Lilium ‘Sorbonne’ (oriental hybrids) with anthocyanin regulatory gene B1/C1.[J]. Journal of Beijing Forestry University, 2015, 37(11): 100-108. doi: 10.13332/j.1000-1522.20140414
Citation: CUI Qi, DU Yun-peng, WEI Chi, GAO Xue, JIA Gui-xia, .. Transformation of Lilium ‘Sorbonne’ (oriental hybrids) with anthocyanin regulatory gene B1/C1.[J]. Journal of Beijing Forestry University, 2015, 37(11): 100-108. doi: 10.13332/j.1000-1522.20140414

花青素合成调节基因B1/C1转化东方百合‘索邦’的研究

doi: 10.13332/j.1000-1522.20140414
基金项目: 

“863”国家高技术研究发展计划项目(2013AA102706)。

详细信息
    作者简介:

    崔祺,博士生。主要研究方向: 园林植物资源与育种。Email: cuiqivivi@163.com 地址:100083北京市海淀区清华东路35号北京林业大学园林学院。
    责任作者: 贾桂霞,教授,博士生导师。主要研究方向: 园林植物资源与育种。Email: gxjia@bjfu.edu.cn 地址: 同上。

    崔祺,博士生。主要研究方向: 园林植物资源与育种。Email: cuiqivivi@163.com 地址:100083北京市海淀区清华东路35号北京林业大学园林学院。
    责任作者: 贾桂霞,教授,博士生导师。主要研究方向: 园林植物资源与育种。Email: gxjia@bjfu.edu.cn 地址: 同上。

Transformation of Lilium ‘Sorbonne’ (oriental hybrids) with anthocyanin regulatory gene B1/C1.

  • 摘要: 百合是全球著名的切花商品花卉,较低的遗传转化效率限制了百合转基因育种的发展,建立高效、稳定的遗传转化体系对于培育转基因新品种至关重要。外源花青素合成调节基因的表达可使花青素在植物细胞内积累, 使植物体外观上表现出色彩的变化,易于观察, 因此可作为报告基因用于植物转基因研究,快速报告细胞、组织、器官或植株是否被转化。本文以东方百合‘索邦’无菌苗鳞片为受体材料,利用农杆菌介导法将花青素合成调节基因B1/C1导入‘索邦’中。通过草甘膦敏感性试验,确定了草甘膦筛选的质量浓度为2.1 mg/L,对农杆菌介导的遗传转化体系进行了优化,研究了侵染液及共培养基成分对抗性芽诱导率的影响,以MS培养基为基本培养基,设置了7种类型改良MS培养基。结果表明:当MS培养基中去除大量元素时,抗性芽获得率相对较高,可达(18.31±1.71)%。在此条件下,将培养基中30 g/L的蔗糖替换成70 g/L的麦芽糖,可使抗性苗诱导率增至(22.27±3.48)%。热激和超声波结合使用能够明显提高抗性苗的获得率,其中以42 ℃热激1.5 min、120 W超声波超声20 s抗性苗获得率最高,可达(26.80±2.24)%。抗性植株经PCR和Southern检测,获得了1株单拷贝转基因植株,初步证明B1/C1基因已整合到‘索邦’基因组DNA中,并且转基因植株叶片、叶柄、鳞茎的花青素含量均高于非转基因植株,说明花青素合成调节基因B1/C1在转基因百合中获得了表达。

     

  • [1] WANG B S, ZHAO K F, ZOU Q. Advances in mechanism of crop salt tolerance and strategies for raising crop salt tolerance [J]. Chinese Bulletin of Botany, 1997, 14(Suppl.): 25-30.
    [1] 王宝山,赵可夫,邹琦. 作物耐盐机理研究进展及提高作物抗盐性的对策[J].植物学通报,1997,14(增刊):25-30.
    [2] YUAN L, WEI C, JIA G X. Study on transformation of Lilium orential Sorbonne with an anthocyanin regulatory gene Rosea1[J]. Guangdong Agricultural Sciences, 2012(10): 10-12.
    [2] 袁霖,魏迟,贾桂霞. 花青素合成调节基因Rosea1转化东方百合索邦的研究[J].广东农业科学,2012(10): 10-12.
    [3] WINANS S C. Transcriptional induction of an Agrobacterium regulatory gene at tandem promoters by plant-released phenolic compounds, phosphate starvation, and acidic growth media [J]. Journal of Balteriol, 1990, 172: 2433-2438.
    [3] SHANG A Q, GAO Y H, DUAN L F, et al. Studies on transformation of lily with dehydration responsive element binding transcription factor AtDREB2A[J]. Acta Horticulturae Sinica, 2014, 41(1): 149-156.
    [4] MCCULLEN C A, BINNS A N. Agrobacterium tumefaciens and plant cell interactions and activities required for interkingdom macromolecular transfer [J]. Annual Review of Cell and Developmental Biology, 2006, 22:101-127.
    [4] LI S. Research on safe and stress-resistant transgenic breeding for lily [D]. Beijing:Beijing Forestry University,2011.
    [5] FENG H Y. Studies on construction of vectors which resist cucumber mosaic virus and lily mottle virus mediated by RNA interference and transformation of lily [D]. Beijing:Chinese Academy of Agricultural Sciences,2013.
    [5] SANTARENM H K, TRICK J S, FINER J J. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons: optimization of transient expression [J]. Plant Cell Reports, 1998, 17: 752-759 .
    [6] GUREL S, GUREL E, KAUR R, et al. Efficient reproducible Agrobacterium-mediated transformation of sorghum using heat treatment of immature embryos [J]. Plant Cell Reports, 2009, 28(3):429-444.
    [6] GONG X, YANG F P, XUE J, et al. Expression of foreign transcription genes Bi and C1 on anthocyanin synthesis pathway in maize: a novel expression system of visual tracking for transgene[J]. Chinese Science Bulletin, 2012, 57 (24): 2285-2291.
    [7] MINESH P,RALPH E. Enhancing Agrobacterium tumefaciens-mediated transformation efficiency of perennial ryegrass and rice using heat and high maltose treatments during bacterial infection [J]. Plant Cell Tissue and Organ Culture, 2013, 85(11):234-246.
    [7] BA C J, XUE J,CHEN X Q, et al. Rapid screening of Cry1Ab/c transgenic maize using an anthocyanin visualizing track system[J]. Chinese Bulletin of Botany, 2013, 48 (1): 59-64.
    [8] LAI E, ShIH H, WEN S, et al. Proteomic analysis of Agrobacterium tumefaciens response to the vir gene inducer acetosyringone [J]. Proteomics, 2006, 6:4130-4136.
    [9] OGAKI M, FURUICHI Y, KURODA K, et al. Importance of co-cultivation medium pH for successful Agrobacterium-mediated transformation of Lilium ×formolongi [J]. Plant Cell Reports, 2008, 27(4):699-705.
    [10] AZADI P, CHIN D P. Macro elements in inoculation and co-cultivation medium strongly affect the efficiency of Agrobacterium-mediated transformationin Lilium[J].Plant Cell Tissue and Organ Culture, 2010, 101:201-209.
    [11] NEZ DE CCERES F F, DAVEY M R, WILSON Z A. A rapid and efficient Agrobacterium-Mediated transformation protocol for Lilium[J]. Acta Horiculturae, 2011, 5:161-168.
    [12] JEFFERSON R A, KAVANAGH T A, BEVAN M W. GUS-fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants [J]. EMBO Journal, 1987, 6: 3901-3907.
    [13] MIYOSHI H, USAMI T, TANAKA I. High level of GUS gene expression driver by pollen specific promoters in electroporated lily pollen protoplasts [J]. Sexual Plant Reproduction, 1995, 8(4): 205-209.
    [14] TSUCHIYA T, TAKUMI S, SHIMADA T. Transient expression of a reporter gene in bulb scales and immature embryos of three Lilium species is affected by 5’up stream sequences and culture conditions [J]. Physioiogia Plantamm, 1996, 98: 699-704.
    [15] WATAD A A, YUN D J, MATSUMOTO T, et al. Microprojectile bombardment-mediated transformation of Lilium longiflorum [J]. Plant Cell Reports, 1998, 17: 262-267.
    [16] 尚爱芹, 高永鹤, 段龙飞, 等. 逆境诱导转录因子AtDREB2A转化百合的研究[J]. 园艺学报, 2014, 41(1): 149-156.
    [17] 李双.百合安全、抗逆转基因育种的研究[D].北京:北京林业大学, 2011.
    [18] 冯慧颖. RNAi介导的抗黄瓜花叶病毒和抗百合斑驳病毒载体的构建及百合的转化研究[D]. 北京:中国农业科学研究院,2013.
    [19] AZADI P, OTANG N V, CHIN D P, et al. Metabolic engineering of Lilium×formolongi using multiple genes of the carotenoid biosynthesis pathway [J]. Plant Biotechnol Reports, 2010, 4:269-280.
    [20] GOFF S A, CONE K C, FROMM M E. Identification of functional domains in the maize transcriptional activator Cl: comparison of wild-type and dominant inhibitor proteins [J]. Genes Development, 1991, 5: 298-309.
    [21] HAN Y J, KIM Y M, LEE J Y, et al. Production of purple-colored creeping bent-grass using maize transcription factor genes Pl and Lc [J]. Plant Cell Repports, 2009, 28: 397-406.
    [22] DOSHI K M, EUDES F, LAROCHE A, et al. Transient embryo-specific expression of anthocyanin in wheat [J]. In Vitro Cellular Developmental Biology Plant, 2006, 42: 432-438.
    [23] DOSHI K M, EUDES F, LAROCHE A, et al. Anthocyanin expression in marker free transgenic wheat and triticale embryos [J]. In Vitro Cellular Developmental Biology Plant, 2007, 43: 429-435.
    [24] 宫硖, 杨凤萍, 薛静, 等. 花青素合成转录因子基因在玉米中的表达研究: 一种新型基因可视化跟踪表达系统 [J]. 科学通报, 2012, 57 (24): 2285-2291.
    [25] GOFF S A, KLEIN T M, ROTH B A, et al. Transactivation of anthocyanin biosynthetic genes following transfer of B regulatory genes into maize tissues [J]. EMBO Journal, 1990, 9: 2517-2522.
    [26] 巴超杰, 薛静, 陈绪清,等. 利用花青素可视化跟踪表达系统快速筛选表达Cry1Ab/c基因的转基因玉米[J]. 植物学报, 2013, 48 (1): 59-64.
    [27] RAY H, YU M, AUSER P, et al. Expression of anthocyanins and proanthocyanidins after transformation of Alfalfa with Maize Lc [J].Plant Physiol, 2003,132: 1448-1463.
    [28] BRENCIC A, WINANS S C. Detection of and response to signals involved in host-microbe interactions by plant-associated bacteria [J]. Microbiology and Molecular Biology Reviews, 2005, 69:155-194.
    [29] PALMER A G, GAO R, MARESH J, et al. Chemical biology of multi-host/pathogen interactions: chemical perception and metabolic complementation [J]. Annual Review of Phytopathology, 2004, 42:439-464.
    [30] MONTORO P, TEINSEREE N, RATTANA W, et al. Effect of exogenous calcium on Agrobacterium tumefaciens-mediated gene transfer in Hevea brasiliensis (rubber tree) friable calli [J]. Plant Cell Reports, 2000, 19:851-855.
    [31] HIEI Y, KOMARI T, KUBO T. Transformation of rice mediated by Agrobacterium tumefaciens[J]. Plant Molecular Biology, 1997, 35: 205-218.
    [32] XI M L, FANG L, QIU S, et al. A high-efficiency regeneration system of oriental lily cultivar ‘Constanta’ [J]. Molecular Plant Breeding, 2012, 3(11):115-120.
    [33] XI M L, SUN L N, QIU S, et al. In vitro mutagenesis and identification of mutants via ISSR in lily (Lilium longiflorum) [J]. Plant Cell Reports, 2012, 31:1043-1051.
    [34] MIRMASOUMI M, AZADI P, SHARAFI A, et al. Simple protocol for plant regeneration of Lilium ledebourii using transverse thin cell layer[J]. Progress in Biological Sciences, 2013, 3(2):117-122.
    [35] KOBAYSHI S, ISHIMARU M, HIRAOKA K, et al. Myb-related genes of the Kyoho grape (Vitis labruscana) regulate anthocyanin biosynthesis [J]. Planta, 2002, 215: 924-933.
    [36] TANAKA Y, KATSUMOTO Y, BRUGLIERA F, et al. Genetic engineering in floriculture [J]. Plant Cell, 2005, 80: 1-24.
  • 加载中
计量
  • 文章访问数:  1281
  • HTML全文浏览量:  113
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-11-14
  • 刊出日期:  2015-11-30

目录

    /

    返回文章
    返回