Preparation and fungicidal bioactivity of wettable powder formulations of Trichoderma asperellum
-
摘要: 以棘孢木霉分生孢子粉、发酵液冻干粉为有效成分制备混配杀菌剂。在测定助剂对棘孢木霉生物活性的基础上,利用正交试验设计法测定助剂对制剂性能的影响,进一步确定助剂种类和含量;通过机械粉碎法将棘孢木霉分生孢子粉、发酵液冻干粉与助剂混合配比加工成可湿性粉剂。室内离体试验法测定棘孢木霉分生孢子粉和发酵液冻干粉不同配比的制剂对油菜菌核病菌抑菌活性,获得最佳比例,并将其加工成可湿性粉剂。结果表明:棘孢木霉孢子粉和发酵液冻干粉可湿性粉剂最佳配比(质量比)为1∶1,润湿分散剂为1% Morwet EFW、5% TERWET 1010、5% Morwet D425、7%木质素磺酸钙;紫外保护剂为0.3%纳米氧化锌,以硅藻土为载体补足100%。该配方可湿性粉剂的孢子萌发率为88.57%,质量悬浮率达81.79%,孢子悬浮率80.12%,润湿时间10 s,平均粒径27 μm,符合商品制剂的标准。室内生物测定结果表明,不同混配比例制剂均有一定的增效作用,但该配比可湿性粉剂增效作用最为显著,其中1 600倍液对油菜菌核病菌防治效果比孢子粉、发酵液冻干粉单剂分别高21.67%和12.09%,抑制率范围为64.17%~88.67%。该制剂属于环境友好型绿色农药,为农林植物病害的生物防治提供了一种新生防材料。Abstract: We prepared microbiological fungicide using conidial germination powder and freeze-dried fermentation broth powder of Trichoderma asperellum in this study. Based on measuring the bioactivity of primary adjuncts to T. asperellum, the effects of adjuncts on formulation properties were further tested according to orthogonal experimental design, and then the optimal species and contents of the adjuncts were finally determined. The wettable powder was formulated with a Muller mixer to blend conidial germination and freeze-dried fermentation broth powder of T. asperellum and adjuncts. The inhibitory activities of wettable powder formulation to Sclerotinia sclerotiorum with different ratios of conidial germination to freeze-dried fermentation broth powder of T. asperellum were evaluated. The results showed that the optimal mass ratio of conidial germination to freeze-dried fermentation broth power of T. asperellum in the wettable powder formulation was 1∶1, and the wetting dispersant was composed of 1% Morwet EFW, 5% TERWET 1010, 5% Morwet D425 and 7% calcium lignosulfonate, using 0.3% nano zinc oxide as UV protectants and diatomite as carrier to make up 100%. The conidial germination was 88.57%, mass suspension percentage was 81.79%, conidial suspension percentage was 80.12% and average particle size was 27 μm, and the wetting time for the formulation was10 s, which accorded with the standard for commercial formulations,i.e., small particle size, high suspensibility and good shelf life. All different mixed formulations had different synergistic effects, but 1∶1 ratio of formulation was significantly synergistic. The wettable power formulations (1 600×) containing both conidial germination and freeze-dried fermentation broth power had 21.67% and 12.09% higher control efficacy to S. sclerotiorum than that of wettable powder formulations containing only conidial or freeze-dried fermentation broth power. The inhibition of wettable power formulation to S. sclerotiorum ranged from 64.17% to 88.67%. Therefore, this formulation is an environment-friendly green pesticide,and our study provides a new bio-fungicide in biological control of plant diseases in agriculture and forestry.
-
-
[1] 朱兆香, 庄文颖. 木霉属研究概况[J]. 菌物学报, 2014, 33(6): 1136-1153. [1] ZHU Z X, ZHUANG W Y. Current understanding of the genus Trichoderma (Hypocreales, Ascomycota) [J]. Mycosystema, 2014, 33(6): 1136-1153.
[2] 张广志, 杨合同, 张新建, 等. 木霉现有种类名录[J]. 菌物学报, 2014, 33(6): 1210-1230. [2] ZHANG G Z, YANG H T, ZHANG X J, et al. A checklist of known species of Trichoderma [J]. Mycosystema, 2014, 33(6): 1210-1230.
[3] ZHANG G Z, YANG H T, ZHANG X J, et al. The biocontrol test of chlorpyrifos-degrading Trichoderma strains on soil born pathogenic fungi [J]. Mycosystema, 2014, 33(6): 1292-1301.
[3] WEINDLING R. Trichoderma lgnorum as a parasite of other soil fungi[J]. Phytopathology, 1932, 22: 837-845.
[4] HOWELL C R. Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts[J]. Plant Disease, 2003, 87(1): 4-10.
[4] QU Y H, WANG Q,YAO Y B, et al. Antagonistic Trichoderma isolates against potato late blight caused by Phytophthora infestans[J]. Mycosystema, 2014, 33(6): 1231-1241.
[5] CHEN J, DOU K, GAO Y D, et al. Mechanism and application of Trichoderma spp. in biological control of corn diseases [J]. Mycosystema, 2014, 33(6): 1154-1167.
[5] HARMAN G E, HOWELL C R, VITERBO A, et al. Trichoderma species-opportunistic, avirulent plant symbionts[J]. Nature Reviews Microbiology, 2004, 2(1): 43-56.
[6] CHEN Y F, GAO Y. The application of Trichoderma spp. in biological control of plant diseases [J]. Jiangsu Agricultural Sciences, 2008(5): 123-125.
[6] 张广志, 杨合同, 张新建, 等. 毒死蜱降解木霉菌对几种重要植物病原真菌的生防活性[J].菌物学报, 2014, 33(6): 1292-1301. [7] ZHANG Y L. Control of pepper blight using combination of Trichoderma spp. and fungicides [D]. Hangzhou: Zhejiang University, 2013:20-25.
[7] 曲远航, 王琦, 姚彦坡, 等. 马铃薯晚疫病生防木霉菌的筛选及鉴定[J].菌物学报, 2014, 33(6): 1231-1241. [8] ZHOU R X, DONG K J. Expounding on pesticide pollution and environmental protection [J]. Environmental Protection of Xinjiang, 1999(1): 31-32.
[8] 陈捷, 窦恺, 高永东, 等. 木霉菌在玉米病害生物防治中的作用机制及应用[J]. 菌物学报, 2014, 33(6): 1154-1167. [9] SAMUELS G J, DODD S L, LU B S, et al. The Trichoderma koningii aggregate species[J]. Studies in Mycology, 2006, 56: 67-133.
[9] FANG Z D. Study method of plant pathology [M]. Beijing: Agricultural Press, 1977: 173-175.
[10] HARMAN G E. Myth and dogmas of biocontrol changes in perceptions derived from research on Trichoderma harzianum T-22[J]. Plant Disease, 2000, 84(4): 377-393.
[10] ZHANG M, PENG H X, DENG X P, et al. Research on the wettable powder of Trichoderma spp. with each gram 500 million living conidia [J]. Southwest China Journal of Agricultural Sciences, 2008, 21(3): 675-679.
[11] 陈云芳, 高渊. 木霉在植物病害生物防治中的应用[J]. 江苏农业科学, 2008(5): 123-125. [11] WANG Z Y, SUN L L, ZHANG J, et al. Preparation and insecticidal efficacy of wettable powder formulations of Bacillus thuringiensis and Beauveria bassiana[J]. Journal of Beijing Forestry University, 2014, 36(3): 34-40.
[12] GAI J Y. Experimental statistical methods [M].Beijing: China Agricultural Press, 2005: 294-295.
[12] PONMURUGAN P, BABY U I. Evaluation of fungicides and biocontrol agents against Phomopsis canker of tea under field condition[J]. Australasian Plant Pathology, 2007, 36(1): 68-72.
[13] ALMEIDA F B, CERQUEIRA F M, SILVA RDO N, et al. Mycoparasitism studies of Trichoderma harzianum strains against Rhizoctonia solani: evaluation of coiling and hydrolytic enzyme production[J]. Biotechnology Letters, 2007, 29(8):1189-1193.
[13] GB/T5451—2001 Method for determination of wettability of pesticide wettable powder formulation [S]. Beijing: China Standard Press,2001.
[14] GB/T14825—2006 Method for determination of suspension percentage of pesticide [S]. Beijing: China Standard Press, 2006.
[14] BENITEZ T, RINCON A M, LIMON M C, et al. Biocontrol mechanisms of Trichoderma strains[J]. International Microbiology, 2004, 7(4): 249-260.
[15] GB/T1600—3 Method for determination of pH value [S]. Beijing: China Standard Press ,1993.
[15] HERMOSA R, RUBIO M B, CARDOZA R E, et al. The contribution of Trichoderma to balancing the costs of plant growth and defense[J]. International Microbiology, 2013, 16(2): 69-80.
[16] KAEWCHAI S, SOYTONG K, HYDE K D. Mycofungicides and fungal biofertilizers[J]. Fungal Diversity, 2009, 38(11): 25-50.
[16] GB/T 17980.35—2000 Guidelines for the field efficacy trials of pesticide (Ⅰ): fungicides against Sclerotinia stem rot of rape [S]. Beijing: China Standard Press ,2000.
[17] SANTIAGO DE A, GARCIA-LOPEZ A M, QUINTERO J M, et al. Effect of Trichoderma asperellum strain T34 and glucose addition on iron nutrition in cucumber grown on calcareous soils[J]. Soil Biology and Biochemistry. 2013, 57: 598-605.
[17] ZHANG J R. Study and application of special adjuncts of prometryn [J]. Modern Agrochemicals, 2003(4):24-26.
[18] LI M, YANG Q, WANG S, et al. Trichoderma harzianumin combination with carbendazim for integrated control of rice seedling blight [J]. Journal of Zhejiang University: Agriculture Life Science, 2009, 35(1):65-70.
[18] ADZMI F, MEON S, MUSA M H, et al. Preparation, characterization and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay[J]. Journal of Microencapsulation, 2012, 29(3): 205-210.
[19] MBARGA J B, BEGOUDE B A D, AMBANG Z, et al. A new oil-based formulation of Trichoderma asperellum for the biological control of cacao black pod disease caused by Phytophthora megakarya[J]. Biological Control, 2014, 77:15-22.
[19] TIAN L S, FENG S B. Screen on endurance strains of Trichoderma and control of Botrytis cinerea [J]. Biotechnology, 2005, 15(5): 26-28.
[20] ZIMAND G, ELAD Y, CHET I. Effect of Trichoderma harzianum on Botrytis cinerea pathogenicity[J]. Phytopathology, 1996 , 86(5) : 945-956.
[20] NIU F S, MA Z Q, BI Q Y, et al. Synergism of Trichoderma harzianum and five fungicides to Botrytis cinerea [J]. Chinese Journal of Pesticide Science, 2013, 15(2): 165-170.
[21] CAO C W, WANG C, GAO C Q, et al. Preparation and application of wettable powder formulations of Trichoderma asperellum: China, 201210492682.3[P]. 2013-02-13.
[21] KREDICS L, ANTAL Z, MANCZINGER L, et al. Influence of environmental parameters on Trichoderma strains with biocontrol potential[J]. Food Technology and Biotechnology, 2003, 41(1): 37-42.
[22] CHEN X L, FANG X, SHEN Y C. Mechanism, resistance and security of Jinggangmycin against Rhizoctonia solani [J]. Agrochemicals, 2010, 49(7): 482-483.
[22] BILJANA G, JUGOSLAV Z. The influence of Trichoderma harzianum on reducing root rot disease in tobacoo seedlings caused by Rhizoctonia solani[J]. International Journal of Pure and Applied Sciences and Technology, 2011, 2(2):1-11.
[23] YANG P, YANG Q, XU Q. Study on metabolites related to biocontrol from Trichoderma asperellum[J]. Journal of Harbin University of Commerce:Natural Sciences Edition, 2014, 30(1): 37-40.
[23] SADYKOVA V S, GROMOVYKH T I. Resistance of barley root rot pathogens to chemical and biological fungicides[J]. Russian Agricultural Sciences, 2011, 37(2):126-129.
[24] 张艳丽. 木霉制剂和杀菌剂协同控制辣椒疫病的研究[D]. 杭州:浙江大学,2013:20-25. [25] MONTE E, RODRIGUEZ A, REY M, et al. Applications of Trichoderma formulations in crop protection[J]. Journal of Zhejiang University:Agriculture Life Science, 2004, 37(4): 410.
[26] KRAUSS U, HOOPEN M, REES R, et al. Mycoparasitism by Clonostachys byssicola and Clonostachys rosea on Trichoderma spp. from cocoa (Theobroma cacao) and implication for the design of mixed biocontrol agents[J]. Biological Control, 2013, 67(3): 317-327.
[27] 周睿霞, 董开军. 谈农药污染与环境保护[J]. 新疆环境保护, 1999(1):31-32. [28] 方中达.植病研究方法[M]. 北京:农业出版社, 1977:173-175. [29] 张敏, 彭化贤, 邓新平, 等. 5亿活孢子/克木霉可湿性粉剂的研制[J]. 西南农业学报, 2008, 21(3) : 675-679. [30] 王志英, 孙丽丽, 张健, 等.苏云金杆菌和白僵菌可湿性粉剂研制及杀虫毒力测定[J].北京林业大学学报, 2014, 36(3) : 34-40. [31] 盖钧镒. 试验统计方法[M]. 北京: 中国农业出版社, 2005: 294-295. [32] GB/T 5451—2001农药可湿性粉剂润湿性测定方法[S]. 北京: 中国标准出版社, 2001. [33] GB/T 14825—2006 农药悬浮率测定方法[S]. 北京: 中国标准出版社, 2006. [34] GB/T 1600—3 pH值测定方法[S].北京:中国标准出版社,1993. [35] GB/T 17980.35—2000农药田间药效试验准则(一):杀菌剂防治油菜菌核病[S]. 北京:中国标准出版社, 2000. [36] 张建荣. 扑草净悬浮剂专用助剂的研究和应用[J]. 现代农药, 2003(4): 24-26. [37] 李敏, 杨谦, 王疏, 等. 哈茨木霉与多菌灵复合使用对水稻苗期立枯病的防治[J]. 浙江大学学报:农业与生命科学版, 2009, 35(1): 65-70. [38] 田连生, 冯树波. 耐药性木霉株的筛选及其对灰霉病的防治[J]. 生物技术, 2005,15(5): 26-28. [39] 牛芳胜, 马志强, 毕秋艳, 等. 哈茨木霉菌与5种杀菌剂对番茄灰霉病菌的协同作用[J].农药学学报,2013,15(2): 165-170. [40] 曹传旺, 王超, 高彩球, 等. 棘孢木霉可湿性粉剂及其应用:中国, 201210492682.3[P]. 2013-02-13. [41] 陈小龙, 方夏, 沈寅初. 纹枯病菌对井冈霉素的作用机制、抗药性及安全性[J].农药, 2010, 49(7): 482-483. [42] KUMAR D P, RAJESH K S,ANUPAMA P D, et al. Studies on exo-chitinase production from Trichoderma asperellum UTP-16 and its characterization [J]. Indian Journal of Microbiology, 2012, 52(3):388-395.
[43] 杨萍,杨谦,许倩. 棘孢木霉生物防治相关代谢产物研究[J]. 哈尔滨商业大学学报:自然科学版, 2014, 30(1): 37-40. [44] KATAN J, GINZBURG C, ASSARAF M. Advances in biological control of plant diseases [M]. Beijing: China Agricultural University Press, 1996: 320-326.
-
期刊类型引用(9)
1. 王喜刚,郭成瑾,焦杨,赵沛,田静,张丽荣,沈瑞清. 哈茨木霉M-17厚垣孢子可湿性粉剂的研制及其对马铃薯干腐病的田间防效. 中国生物防治学报. 2024(06): 1319-1330 . 百度学术 2. 申云鑫,李铭刚,施竹凤,赵江源,王楠,李者芬,杨明英,陈齐斌,杨佩文. 贝莱斯芽胞杆菌SH-1471可湿性粉剂研制及其对番茄枯萎病的防治效果. 中国生物防治学报. 2023(04): 904-914 . 百度学术 3. 薛德星,李美,高兴祥,李健. 生防菌棘孢木霉的分离鉴定及生物学特性研究. 山东农业科学. 2023(10): 118-123 . 百度学术 4. 张成,李欣雨,邹艺琴,王睿,侯巨梅,廖文敏,刘铜. 木霉菌Trichoderma brev可湿性粉剂的研制. 农药. 2022(05): 329-335 . 百度学术 5. 胡建坤,黄蓉,黄瑞荣,朱植银,王玉,曾钦华. 2种化学杀菌剂与木霉及其组配制剂对辣椒疫病防控效果研究. 生物灾害科学. 2021(04): 460-464 . 百度学术 6. 庄新亚,程亮,郭青云. 燕麦镰刀菌GD-2可湿性粉剂研制及对野燕麦的防除效果. 青海大学学报. 2020(03): 9-17+43 . 百度学术 7. 遇文婧,宋小双,邓勋,平晓帆,周琦,刘志华. 刺激植物响应蛋白基因Epl1克隆、原核表达及功能初探. 北京林业大学学报. 2018(01): 17-26 . 本站查看 8. 徐沛东,朱植银,黄加诚,肖永良,谢远芳,魏方林. 新型生物农药棘孢木霉菌防治辣椒疫病应用研究. 生物灾害科学. 2017(03): 172-175 . 百度学术 9. 罗洋,滕应,罗绪强,李振高. 里氏木霉FS10-C可湿性粉剂的研制及其促生效果测定. 生物技术通报. 2016(08): 194-199 . 百度学术 其他类型引用(8)
计量
- 文章访问数: 2089
- HTML全文浏览量: 345
- PDF下载量: 59
- 被引次数: 17