高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长白落叶松林生态系统净初级生产力对气候变化的响应

何丽鸿 王海燕 王璐 王岳

何丽鸿, 王海燕, 王璐, 王岳. 长白落叶松林生态系统净初级生产力对气候变化的响应[J]. 北京林业大学学报, 2015, 37(9): 28-36. doi: 10.13332/j.1000-1522.20140439
引用本文: 何丽鸿, 王海燕, 王璐, 王岳. 长白落叶松林生态系统净初级生产力对气候变化的响应[J]. 北京林业大学学报, 2015, 37(9): 28-36. doi: 10.13332/j.1000-1522.20140439
HE Li-hong, WANG Hai-yan, WANG Lu, WANG Yue.. Response of net primary productivity of Larix olgensis forest ecosystem to climate change.[J]. Journal of Beijing Forestry University, 2015, 37(9): 28-36. doi: 10.13332/j.1000-1522.20140439
Citation: HE Li-hong, WANG Hai-yan, WANG Lu, WANG Yue.. Response of net primary productivity of Larix olgensis forest ecosystem to climate change.[J]. Journal of Beijing Forestry University, 2015, 37(9): 28-36. doi: 10.13332/j.1000-1522.20140439

长白落叶松林生态系统净初级生产力对气候变化的响应

doi: 10.13332/j.1000-1522.20140439
基金项目: 

国家自然科学基金项目(31270697)。

详细信息
    作者简介:

    何丽鸿。主要研究方向:土壤学、植物营养生态学。Email:leehomh@163.com 地址:100083北京市清华东路35号北京林业大学林学院。

    责任作者:

    王海燕,博士,副教授。主要研究方向:土壤学、植物营养学。Email:haiyanwang72@aliyun.com 地址:同上。

Response of net primary productivity of Larix olgensis forest ecosystem to climate change.

  • 摘要: 应用BIOME-BGC模型和样地调查数据,模拟并验证了吉林省汪清林业局长白落叶松林生态系统净初级生产力(NPP)在1980—2013年间的动态变化情况,分析了NPP对区域气候变化的响应以及在SRES A2和B2排放情景下长白落叶松林生态系统NPP的动态变化。结果表明:BIOME-BGC模型较好地模拟了样地NPP的动态变化,且模拟NPP与样地实测生产力的动态变化规律相似;在1980—2013年间,长白落叶松林生态系统NPP(以碳计算)均值为477.74 g/(m2·a),波动范围是286.60~566.27 g/(m2·a);研究区内长白落叶松林生态系统NPP与年降水量呈显著正相关;在未来A2和B2排放情景下,NPP对未来降水量增加的响应呈正向,对年均温度增加呈负相关,其中温度升高对NPP的负效应要大于降水量增加对NPP的正效应;此外,CO2浓度增加有利于长白落叶松林生态系统NPP的增加。

     

  • [1] PIAO S L, FANG J Y, GUO Q H. Application of CASA model to the estimation of Chinese terrestrial net primary productivity [J]. Chinese Journal of Plant Ecology, 2001, 25(5): 603-608.
    [1] IPCC. Climate change 2007: the physical science basis [M]. Cambridge: Cambridge University Press, 2007.
    [2] IPCC. Climate change 2013: the physical science basis [M]. Cambridge: Cambridge University Press, 2013.
    [2] The Commission of National Assessment Report on Climate Change. National assessment report on climate change prepared by the commission[M]. Beijing: Science Press, 2007: 149.
    [3] CAO M K, WOODWARD F I. Dynamic responses of terrestrial ecosystem carbon cycling to global climate change [J]. Nature, 1998, 393(6682): 249-252.
    [3] FAN M R. The response of net primary productivity on climate change in forest ecosystem of Beijing mountain area [D]. Beijing: Beijing Forestry University, 2011.
    [4] ZHU W Q, PAN Y Z, ZHANG J S. Estimation of net primary of productivity of Chinese terrestrial vegetation based on remote sensing[J]. Journal of Plant Ecology, 2007, 31(3): 413-424.
    [4] FIELD C B, BEHRENFELD M J, RANDERSON J T, et al. Primary production of the biosphere: integrating terrestrial and oceanic components [J]. Science, 1998, 281(5374): 237-240.
    [5] PENG C H, ZHOU X L, ZHAO S Q, et al. Quantifying the response of forest carbon balance to future climate change in Northeastern China: model validation and prediction [J]. Global and Planetary Change, 2009, 66(3): 179-194.
    [5] LIU G H, FU B J. Effects of global climate change on forest ecosystems [J]. Journal of Natural Resources, 2001, 16(1): 71-78.
    [6] YU G R, WEN X F, LI Q K, et al. Chinese subtropical and temperate typical forest ecosystem respiration of seasonal patterns and environmental response characteristics[J]. Science in China: Series D Earth Science, 2004, 34 (Suppl. Ⅱ): 84-94.
    [6] 朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力[J]. 植物生态学报, 2001, 25(5): 603-608.
    [7] FAN M R, YU X X, ZHANG Z M, et al. The study of the impact of elevated CO2 concentration and climate change on net primary productivity of Quercus variabilis forest in Beijing Mountain Area [J]. Ecology and Environmental Sciences, 2010, 19(6): 1278-1283.
    [7] HASENAUER H, PETRITSCH R, ZHAO M S, et al. Reconciling satellite with ground data to estimate forest productivity at national scales [J]. Forest Ecology and Management, 2012, 276:196-208.
    [8] CHAPIN III F, WOODWELL G, RANDERSON J T, et al. Reconciling carbon-cycle concepts, terminology, and methods [J]. Ecosystems, 2006, 9(7): 1041-1050.
    [8] JIANG Y L, ZHOU G S. Carbon equilibrium in Larix gmelinii forest and impact of global change [J]. Chinese Journal of Applied Ecology, 2001, 12(4): 481-484.
    [9] ZHAO G S, WANG J B, FAN W Y, et al. Vegetation net primary productivity in Northeast China in 2000-2008: simulation and seasonal change[J]. Chinese Journal of Applied Ecology, 2011, 22(3): 621-630.
    [9] FANG J Y, PIAO S L, FIELD C B, et al. Increasing net primary production in China from 1982 to 1999 [J]. Frontiers in Ecology and the Environment, 2003, 1(6): 293-297.
    [10] WHITE M A, THORNTON P E, RUNNING S W, et al. Parameterization and sensitivity analysis of the BIOME-BGC terrestrial ecosystem model: net primary production controls [J]. Earth Interactions, 2000, 4(3): 1-85.
    [10] YANG J Y, ZHAO H X, WANG C K. Response of forests to nitrogen saturation [J]. Chinese Journal of Applied and Environmental Biology, 2004, 10(4): 507-511.
    [11] RUNNING S W, HUNT E R. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models [C]∥EHLERINGER J R, FIELD C B. Scaling physiological processes: leaf to globe. SanDiego: Academic Press, 1993: 141-158.
    [11] PENG J J, HE X Y, CHEN Z J, et al. Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2: a simulation based on BOME-BGC model and tree-ring data[J]. Chinese Journal of Applied Ecology, 2012, 23(7): 1733-1742.
    [12] WANG X Y, MA L Y, JIA Z K, et al. Root inclusion net method: novel approach to determine fine root production and turnover in Larix principis-rupprechtii Mayr plantation in North China [J]. Turkish Journal of Agriculture and Forestry, 2014, 38(3): 388-398.
    [13] HAVRANEK W. Gas exchange and dry matter allocation in larch at the alpine timberline on Mount Patscherkofel [C]∥TURNER H, TRANQUILLINI W. Establishment and tending of subalpine forest: research and management. Berichte: IUFRO Workshop, 1985: 135-142.
    [14] KLOEPPEL B D, GOWER S T, TREICHEL I W, et al. Foliar carbon isotope discrimination in Larix species and sympatric evergreen conifers: a global comparison [J]. Oecologia, 1998, 114(2): 153-159.
    [15] NAMBIAR E S. Do nutrients retranslocate from fine roots? [J]. Canadian Journal of Forest Research, 1987, 17(8): 913-918.
    [16] ALLISON F, MURPHY R, KLEIN C. Nitrogen requirements for the decomposition of various kinds of finely ground woods in soil [J]. Soil Science, 1963, 96(3): 187-190.
    [17] ABER J D, MELILLO J M, MCCLAUGHERTY C A. Predicting long-term patterns of mass loss, nitrogen dynamics, and soil organic matter formation from initial fine litter chemistry in temperate forest ecosystems [J]. Canadian Journal of Botany, 1990, 68(10): 2201-2208.
    [18] WIESER G. Evaluation of the impact of ozone on conifers in the Alps: a case study on spruce, pine and larch in the Austrian Alps [J]. Phyton Horn, 1999, 39(4): 241-252.
    [19] 气候变化国家评估报告编委会. 气候变化国家评估报告[M]. 北京: 科学出版社, 2007: 149.
    [20] 范敏锐. 北京山区森林生态系统净初级生产力对气候变化的响应[D]. 北京:北京林业大学, 2011.
    [21] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算[J]. 植物生态学报, 2007, 31(3): 413-424.
    [22] ZHANG Y J, ZHOU G S. Exploring the effects of water on vegetation change and net primary productivity along the IGBP Northeast China transect [J]. Environmental Earth Sciences, 2011, 62(7): 1481-1490.
    [23] 刘国华, 傅伯杰. 全球气候变化对森林生态系统的影响[J]. 自然资源学报, 2001, 16(1): 71-78.
    [24] 于贵瑞, 温学发, 李庆康, 等. 中国亚热带和温带典型森林生态系统呼吸的季节模式及环境响应特征[J]. 中国科学: D辑 地球科学, 2004, 34(增刊Ⅱ): 84-94.
    [25] 范敏锐, 余新晓, 张振明, 等. CO2倍增和气候变化对北京山区栓皮栎林NPP影响研究[J]. 生态环境学报, 2010, 19(6): 1278-1283.
    [26] KEYSER A R, KIMBALL J, NEMANI R, et al. Simulating the effects of climate change on the carbon balance of North American high latitude forests [J]. Global Change Biology, 2000, 6(Suppl.1): 185-195.
    [27] 蒋延玲, 周广胜. 兴安落叶松林碳平衡和全球变化影响研究[J]. 应用生态学报, 2001, 12(4): 481-484.
    [28] 赵国帅, 王军邦, 范文义, 等. 2000—2008年中国东北地区植被净初级生产力的模拟及季节变化[J]. 应用生态学报, 2011, 22(3): 621-630.
    [29] KNORR W, PRENTICE I, HOUSE J, et al. Long-term sensitivity of soil carbon turnover to warming [J]. Nature, 2005, 433(7023): 298-301.
    [30] 杨金艳, 赵惠勋, 王传宽. 森林对氮饱和的响应[J]. 应用与环境生物学报, 2004, 10(4): 507-511.
    [31] SCHIMEL D S, BRASWELL B, MCKEOWN R, et al. Climate and nitrogen controls on the geography and timescales of terrestrial biogeochemical cycling [J]. Global Biogeochemical Cycles, 1996, 10(4): 677-692.
    [32] 彭俊杰,何兴元,陈振举,等. 华北地区油松林生态系统对气候变化和CO2浓度升高的响应:基于BIOME-BGC模型和树木年轮的模拟[J]. 应用生态学报, 2012, 23(7): 1733-1742.
    [33] CHURKINA G, RUNNING S W. Contrasting climatic controls on the estimated productivity of global terrestrial biomes [J]. Ecosystems, 1998, 1(2): 206-215.
    [34] ZAK D R, PREGITZER K S, CURTIS P S, et al. Atmospheric CO2, soil-N availability, and allocation of biomass and nitrogen by Populus tremuloides [J]. Ecological Applications, 2000, 10(1): 34-46.
  • 加载中
计量
  • 文章访问数:  849
  • HTML全文浏览量:  76
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-01
  • 刊出日期:  2015-09-30

目录

    /

    返回文章
    返回