Characteristics and simulation of the canopy conductance of Hippophae rhamnoides in Qaidam Region of northwestern China
-
摘要: 为了揭示沙棘冠层导度对环境因子的响应规律,评价Jarvis模型在沙棘冠层尺度上的适用性,利用Granier热消散式探针连续测定了青海省柴达木盆地实验站内的沙棘灌丛树干液流,并同步观测气象因子,利用Penman-Monteith方程反推方法,获得了长期连续的冠层导度。在分析沙棘冠层导度动态变化规律的基础上,采用十字交叉法对Jarvis模型进行参数率定和误差分析。结果表明:研究区沙棘冠层导度日变化呈“单峰型”曲线,冠层导度随饱和水汽压差的增加呈负指数关系下降,并与太阳辐射强度呈正相关。基于饱和水汽压差、太阳辐射强度和气温这3个环境变量的Jarvis模型可解释gc变化的81%,且最低相对误差仅11.01%。环境因子对冠层导度(gc)模型精度的影响依次为饱和水汽压差(VPD)>太阳辐射强度(Rs)>气温(T)。Abstract: The aim of this study was to explain the response of canopy conductance of sea buckthorn (Hippophae rhamnoides ) to different environmental conditions so as to evaluate the feasibility of application of Jarvis model in sea buckthorn at the canopy scale. By using Granier's thermal dissipation probe, the sap flow of sea buckthorn in Qaidam Basin in Qinghai Province,northwestern China was continuously measured,and as well,the environmental factors such as incoming solar radiation intensity (Rs), air temperature (T), relative humidity (RH), wind speed (u) and rainfall were synchronically measured.Based on sap flow, canopy conductance (gc) was continuously simulated by back-calculated Penman-Monteith model. By analysis of gc of sea buckthorn, Jarvis stomatal model was simulated and analyzed with cross-validation. The results indicated that the diurnal variation in canopy conductance of sea buckthorn showed a single-peaked curve. There was a negative logarithm relationship between canopy conductance and vapor pressure deficit (VPD) under different radiation conditions. And the canopy conductance had a positive relationship with solar radiation intensity. The three variables, VPD, T and Rs, explained 81% of the variation in conductance in Jarvis-type mode, with the lowest average relative error of only 11.01%. And the degree of the environmental factors affecting the simulation accuracy of the model is ranked as VPD>Rs>T.
-
Keywords:
- sea buckthorn /
- sap flow /
- canopy conductance /
- Jarvis model /
- simulation
-
-
[1] TANG J W,BOLSTAD P V,EWERS B E, et al. Sap flux: up scaled canopy transpiration,stomatal conductance,and water use efficiency in an old growth forest in the Great Lakes region[J]. Journal of Geophysical Research,2006,111(2): 1-12.
[1] HE K N, TIAN Y, ZHANG G C.Modeling of the daily transpiration variation in locust forest by Penman-Monteith equation [J]. Acta Ecologica Sinica, 2003, 23(2): 251-258.
[2] SHEN Z X, XU L H,WANG Y H,et al. Characteristics of sap flow and water use of Hippophae rhamnoides community in Liupan Mountains,Ningxia [J]. Science of Soil and Water Conservation,2014, 12(3): 59-65.
[2] PATAKI D E,OREN R,KATUL G,et al. Canopy conductance of Pinus taeda , Liquidambar styraciflua and Quercus phellos under varying atmospheric and soil water conditions[J]. Tree Physiology,1998,18(5): 307-315.
[3] EWERS B E,GOWER S T,BOND-LAMBERTY B,et al. Effects of stand age and tree species on canopy transpiration and average stomatal conductance of boreal forests[J]. Plant,Cell and Environment,2005,28(5): 660-678.
[3] YU H B, YANG J,ZANG C X, et al. Diurnal variation of Hippophae rhamnoides L. subsp. sinensis Rousi stem sap flow in Huangfuchuan Basin and related environmental factors [J]. Chinese Journal of Ecology, 2008, 27(7): 1071-1076.
[4] 贺康宁,田阳,张光灿. 刺槐日蒸腾过程的Penman-Monteith方程模拟[J]. 生态学报, 2003, 23(2): 251-258. [4] YU H B, YANG J, XU Y D. Mathematical model of stem sap flow flux for Hippophae rhamnoides L. subsp. sinensis Rousi in Huangfuchuan Basin [J]. Research of Soil and Water Conservation, 2009, 16(1):162-166.
[5] ALVES I, PERRIER A, PEREIRA L S.Aerodynamic and surface resistances of complete cover crops: how good is the ‘big leaf'?[J]. Transactions of the ASAE, 1998, 41(2): 345-351.
[5] RUAN C J,LI D Q. Study on the transpiration of artificial Hippophae rhamnoides L.forest in the loess hilly region [J]. Acta Ecologica Sinica, 2001, 21(12):2141-2146.
[6] XU W T, ZHAO P, WANG Q, et al. Calculation and modeling of the canopy stomatal conductance of Acacia mangium from sap flow data [J]. Acta Ecologica Sinica, 2007, 27(10): 4122-4130.
[6] GRANIER A, HUC R, BARIGAH S T.Transpiration of natural rain forest and its dependence on climatic factors[J]. Agricultural and Forest Meteorology, 1996, 78(1-2): 19-29.
[7] TRAMBOUZ W, BERTUZZI P, VOLTZ M.Comparison ofmethods for estimating actual evapotranspiration in a row cropped vineyard[J]. Agricultural and Forest Meteorology, 1998, 91(3-4): 193-208.
[7] XIA Y Q, SHAO M A. The sap flow dynamics of Caragana korshinskff and the influence of environmental factors in semi-arid region of the Loess Plateau [J]. Acta Ecologica Sinica, 2008, 28(4): 1336-1382.
[8] MAGNANI F,LEONARDI S,TOGNETTI R,et al. Modelling the surface conductance of a broad-leaved canopy: effect of partial decoupling from atmosphere[J]. Plant,Cell and Environment,1998,21(8): 867-879.
[8] HAN L. Characteristics and modeling of canopy transpiration of main tree species in semi-arid region of Chinese Loess Plateau[D].Beijing:Beijing Forestry University, 2011.
[9] GRANIER A,LOUSTAU D,BRÉDA N. A generic model of forest canopy conductance dependent on climate,soil water availability and leaf area index[J]. Annals of Forest Science,2000,57(8): 755-765.
[10] GARCA-SANTOS G,BRUIJNZEEL L A,DOLMAN A J. Modelling canopy conductance under wet and dry conditions in a subtropical cloud forest[J]. Agricultural and Forest Meteorology,2009,149(10): 1565-1572.
[11] NICOLÁS E,BARRADAS V L,ORTUO M F,et al. Environmental and stomatal control of transpiration,canopy conductance and decoupling coefficient in young lemon trees under shading net[J]. Environmental and Experimental Botany,2008,63(1-3): 200-206.
[12] TESTI L,ORGAZ F,VILLALOBOS F J. Variations in bulk canopy conductance of an irrigated olive ( Olea europaea L.) orchard[J]. Environmental and Experimental Botany,2006,55(1-2): 15-28.
[13] BERNIER P Y,BARTLETT P,BLACK T A,et al. Drought constraints on transpiration and canopy conductance inmature aspen and jack pine stands[J]. Agricultural and Forest Meteorology,2006, 140(1-4): 64-78.
[14] KOMATSU H,KANG Y,KUME T,et al. Transpiration from a Cryptomeria japonica plantation(II): responses of canopy conductance tometeorological factors [J]. Hydrological Processes,2006,20(6): 1321-1334.
[15] 沈振西,徐丽宏,王彦辉,等. 宁夏六盘山沙棘液流变化及耗水特性[J]. 中国水土保持科学,2014, 12(3): 59-65. [16] 于红博,杨劫,藏春鑫,等. 皇甫川流域中国沙棘树干液流日变化及其相关因子[J]. 生态学杂志, 2008, 27(7): 1071-1076. [17] 于红博,杨劫,徐延达,等. 皇甫川流域中国沙棘的树干液流量数学模型[J]. 水土保持研究, 2009, 16(1):162-166. [18] 阮成江,李代琼. 黄土丘陵区人工沙棘蒸腾作用研究[J]. 生态学报, 2001, 21(12):2141-2146. [19] 许文滔,赵平,王权,等. 基于树干液流测定值的马占相思( Acacia mangium )冠层气孔导度计算及数值模拟[J]. 生态学报. 2007, 27(10): 4122-4130. [20] 夏永秋,邵明安. 黄土高原半干旱区柠条( Caragana korshinaskii )树干液流动态及其影响因子[J]. 生态学报. 2008, 28(4): 1336-1382. [21] IRMAK S, MUTIIBWA D, IRMAK A, et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density[J]. Agricultural and Forest Meteorology, 2008, 148(6-7): 1034-1044.
[22] MONTEITH J L,UNSWORTH M H. Principles of environmental physics[M]. London: Edward Arnold Press,1990.
[23] BOSVELD F C, BOUTEN W. Evaluation of transpiration models with observations over a Douglas-fir forest[J]. Agricultural and Forest Meteorology, 2001, 108(4): 247-264.
[24] OGUNTUNDE P G, VAN DE GIESEN N, SAVENIJE H H G. Measurement and modelling of transpiration of a rain-fed citrus orchard under subhumid tropical conditions[J]. Agricultural Water Management, 2007, 87(2): 200-208.
[25] JARVIS P G. The interpretation of the variations in water potential and stomatal conductance found in canopies in the field[J]. Philosophical Transpirations of the Royal Society of London B, 1976, 273(927): 596-610.
[26] STEWART J B. Modeling surface conductance of pine forest[J]. Agriculture and Forest Meteorology, 1988, 43(1): 19-35.
[27] MARQUARDT D W. An algorithm for least square estimation of non-linear parameters[J]. Appl Math, 1963, 11(2): 441-443.
[28] 韩磊. 黄土半干旱区主要造林树种蒸腾耗水及冠层蒸腾模拟研究[D]. 北京:北京林业大学,2011. [29] KUMAGAI T, SAITOH T M, SATO Y, et al. Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak[J]. J Hydrol, 2004, 287(1-4): 237-251.
[30] WALLACE J, MCJANNET D. Processes controlling transpiration in the rainforests of north Queensland[J]. J Hydrol, 2010, 384(1-2): 107-117.
[31] CHEN L, ZHANG Z, LI Z, et al. Biophysical control of whole tree transpiration under an urban environment in Northern China[J]. J Hydrol, 2011, 402(3-4): 388-400.
[32] DAVID T, FERREIRA M, COHEN S, et al. Constraints on transpiration from an evergreen oak tree in southern Portugal[J]. Agricultural and Forest Meteorology, 2004, 122(3-4): 193-205.
-
期刊类型引用(5)
1. 白玉洁,朱媛君,马景永,刘鹏,杨睿智,李成,查天山. 城市绿地冠层导度季节变化及其环境调控. 生态学杂志. 2020(01): 120-129 . 百度学术
2. 胡兴波,芦新建,于洋,贺康宁. 基于热扩散法的青海云杉冠层导度模拟(英文). 林业科学. 2018(03): 8-18 . 百度学术
3. 韩磊,何俊,齐拓野,田佳,孙兆军,展秀丽. 宁夏河东沙区侧柏冠层气孔导度对环境因子的响应及其模拟. 生态学杂志. 2018(09): 2862-2868 . 百度学术
4. 王珊,查天山,贾昕,吴雅娟,白玉洁,冯薇. 毛乌素沙地油蒿群落冠层导度及影响因素. 北京林业大学学报. 2017(03): 65-73 . 本站查看
5. 唐达,王辉,张谭,李思思,贺康宁. 柴达木盆地沙棘茎流速率与环境因子的关系. 干旱区研究. 2017(03): 630-637 . 百度学术
其他类型引用(5)
计量
- 文章访问数: 1477
- HTML全文浏览量: 283
- PDF下载量: 28
- 被引次数: 10