• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

异源表达Peu-miR473a增强拟南芥的抗旱性

李岚, 王厚领, 赵琳, 赵莹, 李惠广, 夏新莉, 尹伟伦

李岚, 王厚领, 赵琳, 赵莹, 李惠广, 夏新莉, 尹伟伦. 异源表达Peu-miR473a增强拟南芥的抗旱性[J]. 北京林业大学学报, 2015, 37(5): 30-39. DOI: 10.13332/j.1000-1522.20140461
引用本文: 李岚, 王厚领, 赵琳, 赵莹, 李惠广, 夏新莉, 尹伟伦. 异源表达Peu-miR473a增强拟南芥的抗旱性[J]. 北京林业大学学报, 2015, 37(5): 30-39. DOI: 10.13332/j.1000-1522.20140461
LI Lan, WANG Hou-ling, ZHAO Lin, ZHAO Ying, LI Hui-guang, XIA Xin-li, YIN Wei-lun. Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana.[J]. Journal of Beijing Forestry University, 2015, 37(5): 30-39. DOI: 10.13332/j.1000-1522.20140461
Citation: LI Lan, WANG Hou-ling, ZHAO Lin, ZHAO Ying, LI Hui-guang, XIA Xin-li, YIN Wei-lun. Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana.[J]. Journal of Beijing Forestry University, 2015, 37(5): 30-39. DOI: 10.13332/j.1000-1522.20140461

异源表达Peu-miR473a增强拟南芥的抗旱性

基金项目: 

国家自然科学基金项目(31270656)、北京市科学研究与研究生培养共建项目(2012)。

详细信息
    作者简介:

    李岚。主要研究方向:植物抗逆分子生物学。Email: lanlan0814@126.com 地址:100083北京市清华东路35号北京林业大学林木育种国家工程实验室。责任作者: 夏新莉,教授,博士生导师。主要研究方向:植物抗逆分子生物学。Email: xiaxl@ bjfu.edu.cn 地址:同上。尹伟伦,教授,博士生导师。主要研究方向:植物生理与生物技术。Email: yinwl@ bjfu.edu.cn 地址:同上。

    李岚。主要研究方向:植物抗逆分子生物学。Email: lanlan0814@126.com 地址:100083北京市清华东路35号北京林业大学林木育种国家工程实验室。责任作者: 夏新莉,教授,博士生导师。主要研究方向:植物抗逆分子生物学。Email: xiaxl@ bjfu.edu.cn 地址:同上。尹伟伦,教授,博士生导师。主要研究方向:植物生理与生物技术。Email: yinwl@ bjfu.edu.cn 地址:同上。

    李岚。主要研究方向:植物抗逆分子生物学。Email: lanlan0814@126.com 地址:100083北京市清华东路35号北京林业大学林木育种国家工程实验室。责任作者: 夏新莉,教授,博士生导师。主要研究方向:植物抗逆分子生物学。Email: xiaxl@ bjfu.edu.cn 地址:同上。尹伟伦,教授,博士生导师。主要研究方向:植物生理与生物技术。Email: yinwl@ bjfu.edu.cn 地址:同上。

Heterogeneous expression of Peu-miR473a gene confers drought tolerance in Arabidopsis thaliana.

  • 摘要: 为了探究胡杨miR473a基因的功能,本文克隆了miR473a的前体Pre-Peu-miR473a,并利用农杆菌花序侵染法将其遗传转化入拟南芥。通过普通PCR和β-葡萄糖苷酸酶(GUS)组织化学染色检测获得CaMV35S: miR473a过表达植株,然后对转基因和野生型植株在甘露醇模拟高渗环境与土壤自然干旱条件下的生长状况及各项生理指标进行评价。结果表明,胡杨miR473a前体长度为100 bp,与毛果杨前体序列相似度为100%,可以形成完美的二级茎环结构。相比于野生型,过表达胡杨miR473a的拟南芥在200 mmol/L甘露醇胁迫条件下的萌发率、根长和生长状况都优于野生型;在土壤干旱处理条件下,转基因拟南芥的株高、相对含水量、脯氨酸含量以及光系统Ⅱ(PSⅡ)最大光合效率均显著高于野生型10%以上(P0.05)。半定量PCR检测显示:Peu-miR473a参与胡杨受干旱胁迫的正调控,杨树中预测的靶基因Potri.012G093900、Potri.007G100200、Potri.009G165300、Potri.004G204400受干旱胁迫的负调控;拟南芥中预测的靶基因AT1G24530、AT5G45000、AT5G46070及AT3G52950在转基因株系中表达量下降。初步预测它们有可能被miR473a靶向调控。本研究表明,miR473a基因在干旱胁迫条件下通过调控植株的抗脱水能力和渗透调节能力发挥一定抗旱作用。
    Abstract: In order to study the function of miR473a in Populus euphratica, we cloned the precursor of miR473a, Pre-Peu-miR473a, and used floral dip method to transform miR473a into Arabidopsis thaliana. Using PCR and histochemical staining of β-glucuronidase (GUS) detection methods, we obtained the CaMV35S:miR473a transgenic plants. Then we validated the growth status and physiological indexes of transgenic plants and wild-type plants under hypertonic environment simulated by D-mannitol and natural soil drought conditions. The results indicated that the miR473a precursor has a length of 100 base pair, sharing 100% homology with miR473a homologue in Populus trichocarpa, and forming perfect secondary stem loop structure. Compared with wild-type A. thaliana, the transgenic plants exhibited higher germination rate, longer root length,and better growth conditions under osmotic stress (200 mmol/L D-mannitol); In soil drought condition, the plant height, relative water content (RWC) and maximum photosynthetic efficiency of transgenic plants were all significantly higher, 10%, than that of the wild type A. thaliana (P0.05). The semi-quantitative PCR results showed that Peu-miR473a gene is involved in up-regulation in P. euphratica under drought stress. The putative target genes in Populus Potri. 012G093900, Potri.007G100200, Potri.009G165300 and Potri.004G204400 are down-regulated by drought stress. Expressions of the potential target genes in A. thaliana AT1G24530, AT5G45000, AT5G46070 and AT3G52950 were all decreased in transgenic plants, indicating that they may be target-regulated by miR473a gene. Our study suggests that miR473a gene plays a role in plant drought tolerance by regulating the plants’ ability to resist dehydration and drought under stress.
  • [1]

    MA H S, XIA X L, YIN W L. Constructing cDNA-AFLP reaction system of abiotic stress study for Populus euphratica[J]. Journal of Beijing Forestry University, 2010 (5): 34-40.

    [1]

    GRIES D, ZENG F, FOETZKI A, et al. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table[J]. Plant, Cell Environment, 2003, 26(5): 725-736.

    [2]

    CHEN J, XIA X, YIN W. Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica[J]. Biochemical and Biophysical Research Communications, 2009, 378(3): 483-487.

    [2]

    MA H S, XIA X L, YIN W L. Cloning and analysis of SCL7 gene from Populus euphratica[J]. Journal of Beijing Forestry University, 2011, 33(1): 1-10.

    [3]

    QIN Y R, XIA X L, YIN W L. Expression determination of miR169g under dehydration and high salinity stress in Populus euphratica leaves by real-time quantitative PCR[J]. Modern Instruments, 2011, 17(3): 28-30.

    [3] 马洪双, 夏新莉, 尹伟伦. 建立胡杨抗逆研究的cDNA-AFLP反应体系[J]. 北京林业大学学报, 2010, 32 (5): 34-40.
    [4] 马洪双, 夏新莉, 尹伟伦. 胡杨SCL7基因及其启动子片段的克隆与分析[J]. 北京林业大学学报, 2011, 33(1): 1-10.
    [4]

    DUAN Z X, QIN Y R, XIA X L, et al. Overexpression of Populus euphratica peu-MIR156j gene enhancing salt tolerance in Arabidopsis thaliana[J]. Journal of Beijing Forestry University, 2012, 34(6): 1-7.

    [5] 覃玉蓉, 夏新莉, 尹伟伦. 实时荧光定量PCR检测miR169g在脱水与高盐胁迫下胡杨叶中的表达[J]. 现代仪器, 2011, 17(3): 28-30.
    [5]

    ZHAO L, YANG Y, WEN C J. Stem-loop real-time quantitative PCR for quantification of miRNA-421 by specific primers[J]. Journal of Nanjing Normal University: Natural Science, 2012, 35(2): 83-88.

    [6]

    LI H S. The theories and techniques of plant physiology and biochemistry experiments[M]. Beijing: Higher Education Press, 2006.

    [6] 段中鑫, 覃玉蓉, 夏新莉, 等. 超量表达胡杨peu-MIR156j基因增强拟南芥耐盐性[J]. 北京林业大学学报, 2012, 34(6): 1-7.
    [7]

    YAN D H, FENNING T, TANG S, et al. Genome-wide transcriptional response of Populus euphratica to long-term drought stress[J]. Plant Science, 2012, 195: 24-35.

    [8]

    WANG H L, CHEN J, TIAN Q, et al. Identification and validation of reference genes for Populus euphratica gene expression analysis during abiotic stresses by quantitative real-time PCR[J]. Physiologia Plantarum, 2014, 152(3):529-545.

    [9]

    LU S, SUN Y H, SHI R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J]. The Plant Cell Online, 2005, 17(8): 2186-2203.

    [10]

    NI Z, HU Z, JIANG Q, et al. Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana[J]. Biochemical and Biophysical Research Communications, 2012, 427(2): 330-335.

    [11]

    ZHOU M, LI D, LI Z, et al. Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass[J]. Plant Physiology, 2013, 161(3): 1375-1391.

    [12]

    LU S, LI Q, WEI H, et al. Ptr-miR397a is a negative regulator of laccase genes affecting lignin content in Populus trichocarpa[J]. Proceedings of the National Academy of Sciences, 2013, 110(26): 10848-10853.

    [13]

    LI B, YIN W, XIA X. Identification of microRNAs and their targets from Populus euphratica[J]. Biochemical and Biophysical Research Communications, 2009, 388(2): 272-277.

    [14]

    LI B, QIN Y, DUAN H, et al. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica[J]. Journal of Experimental Botany, 2011, 62(11): 3765-3779.

    [15]

    SI J, ZHOU T, BO W, et al. Genome-wide analysis of salt-responsive and novel microRNAs in Populus euphratica by deep sequencing[J]. BMC Genetics, 2014, 15(Suppl.1): S6.

    [16]

    FANG Y, XIE K, XIONG L. Conserved miR164-targeted NAC genes negatively regulate drought resistance in rice[J]. Journal of Experimental Botany, 2014, 65(8): 2119-2135.

    [17]

    WANG W, VINOCUR B, ALTMAN A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1-14.

    [18]

    CHAVES M M, FLEXAS J, PINHEIRO C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell[J]. Annals of Botany, 2009, 103(4): 551-560.

    [19]

    MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651-681.

    [20]

    LI Z, BALDWN C M, HU Q, et al. Heterologous expression of Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic creeping bentgrass (Agrostis stolonifera L.)[J]. Plant, Cell Environment, 2010, 33(2): 272-289.

    [21]

    SHINOZAKI K, YAMAGUCHI-SHINOZAKI K. Gene networks involved in drought stress response and tolerance[J]. Journal of Experimental Botany, 2007, 58(2): 221-227.

    [22]

    NAG A, KING S, JACK T. miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis[J]. Proceedings of the National Academy of Sciences, 2009, 106(52): 22534-22539.

    [23]

    RAO G, SUI J, ZENG Y, et al. De Novo transcriptome and small RNA analysis of two Chinese willow cultivars reveals stress response genes in Salix matsudana[J]. PloS One, 2014, 9(10): e109122.

    [24]

    BARTEL D P. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009, 136(2): 215-233.

    [25]

    VOINNET O. Origin, biogenesis, and activity of plant microRNAs[J]. Cell, 2009, 136(4): 669-687.

    [26]

    SHEN J, XING T, YUAN H, et al. Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by microRNA expressions[J]. PLoS One, 2013, 8(10): e77047.

    [27]

    HIRSCH S, OLDROYD G E. GRAS-domain transcription factors that regulate plant development[J]. Plant Signal Behavior, 2009, 4(8): 698-700.

    [28]

    ZHANG D, IYER L M, ARAVIND L. Bacterial GRAS domain proteins throw new light on gibberellic acid response mechanisms[J]. Bioinformatics, 2012, 28(19): 2407-2411.

    [29]

    SUN L, LI X, FU Y, et al. GS6, a member of the GRAS gene family, negatively regulates grain size in rice[J]. Journal of Integrative Plant Biology, 2013, 55(10): 938-949.

    [30]

    MA H S, LIANG D, SHUAI P, et al. The salt-and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana[J]. Journal of Experimental Botany, 2010,61: 4011-4019.

    [31]

    SHUAI P, LIANG D, ZHANG Z, et al. Identification of drought-responsive and novel Populus trichocarpa microRNAs by high-throughput sequencing and their targets using degradome analysis[J]. BMC Genomics, 2013, 14(1): 233.

    [32]

    ZHANG X, HENRIQUES R, LIN S S, et al. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method[J]. Nature Protocols, 2006, 1(2): 641-646.

    [33] 赵丽, 杨洋, 温传俊. 茎-环RT-PCR法定量miRNA-421的引物设计[J]. 南京师范大学学报: 自然科学版, 2012, 35(2): 83-88.
    [34]

    SHI H, YE T, ZHU J K, et al. Constitutive production of nitric oxide leads to enhanced drought stress resistance and extensive transcriptional reprogramming in Arabidopsis[J]. Journal of Experimental Botany, 2014, 65(15): 4119-4131.

    [35] 李和生. 植物生理生化实验原理和技术[M]. 北京:高等教育出版社, 2006.
    [36]

    CAO X, BARLOWE C. Asymmetric requirements for a Rab GTPase and SNARE proteins in fusion of COPII vesicles with acceptor membranes[J]. The Journal of Cell Biology, 2000, 149(1): 55-66.

    [37]

    ZHU Q H, FAN L, LIU Y, et al. MiR482 regulation of NBS-LRR defense genes during fungal pathogen infection in cotton[J]. PLoS One, 2013, 8(12): e84390.

    [38]

    ZHANG C, LIU L, WANG X, et al. The Ph-3 gene from Solanum pimpinellifolium encodes CC-NBS-LRR protein conferring resistance to Phytophthora infestans[J]. Theoretical and applied genetics, 2014, 127: 1353-1364.

    [39]

    OSTLER N, BRITZEN-LAURENT N, LIEBL A, et al. Gamma interferon-induced guanylate-binding protein 1 is a novel actin cytoskeleton remodeling factor[J]. Molecular and Cellular Biology, 2014, 34(2): 196-209.

    [40]

    ZHU Z X, CAO Y C, CAO W J, et al. Recent progress in interferon induced protein GBP1 research[J]. Chinese Journal of Virology, 2014, 30(4): 456-462.

    [41]

    LU S, SUN Y H, CHIANG V L. Stress-responsive microRNAs in Populus[J]. The Plant Journal, 2008, 55(1): 131-151.

    [42]

    LU X Y, HUANG X L. Plant miRNAs and abiotic stress responses[J]. Biochemical and Biophysical Research Communications, 2008, 368(3): 458-462.

    [43]

    SHAIK R, RAMAKRISHNA W. Bioinformatic analysis of epigenetic and microRNA mediated regulation of drought responsive genes in rice[J]. PLoS One, 2012, 7(11): e49331.

    [44]

    YIN F, GAO J, LIU M, et al. Genome-wide analysis of Water-stress-responsive microRNA expression profile in tobacco roots[J]. Functional Integrative Genomics, 2014, 14(2): 319-332.

    [45]

    NANJO T, KOBAYASHI M, YOSHIBA Y, et al. Biological functions of proline in morphogenesis and osmotolerance revealed in antisense transgenic Arabidopsis thaliana[J]. The Plant Journal, 1999, 18(2): 185-193.

    [46]

    CASTONGUAY Y, MARKHART A H. Leaf gas exchange in water-stressed common bean and tepary bean[J]. Crop Science, 1992, 32(4): 980-986.

    [47]

    PERCIVAL G C, SHERIFFS C N. Identification of drought-tolerant woody periennials using chlorophyll fluorescence[J]. Journal of Arboriculture, 2002, 28(5): 215-223.

  • 期刊类型引用(3)

    1. 刘子洋,强波,张浩,符利勇,郭晋平. 气候和立地等级对落叶松林分生物量估计的影响. 北京林业大学学报. 2025(01): 22-28 . 本站查看
    2. 何潇,李海奎,张逸如,黄金金. 天然次生林碳储量生长模型与固碳能力驱动力研究. 北京林业大学学报. 2023(01): 1-10 . 本站查看
    3. 何潇,雷相东,段光爽,丰庆荣,张逸如,冯林艳. 气候变化对落叶松人工林生物量生长的影响模拟. 南京林业大学学报(自然科学版). 2023(03): 120-128 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  1994
  • HTML全文浏览量:  304
  • PDF下载量:  43
  • 被引次数: 7
出版历程
  • 收稿日期:  2014-12-24

目录

    /

    返回文章
    返回