高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

模拟冻融循环对黑土黏化层孔隙结构的影响

夏祥友 王恩姮 杨小燕 陈祥伟

夏祥友, 王恩姮, 杨小燕, 陈祥伟. 模拟冻融循环对黑土黏化层孔隙结构的影响[J]. 北京林业大学学报, 2015, 37(6): 70-76. doi: 10.13332/j.1000-1522.20140474
引用本文: 夏祥友, 王恩姮, 杨小燕, 陈祥伟. 模拟冻融循环对黑土黏化层孔隙结构的影响[J]. 北京林业大学学报, 2015, 37(6): 70-76. doi: 10.13332/j.1000-1522.20140474
XIA Xiang-you, WANG En-heng, YANG Xiao-yan, CHEN Xiang-wei. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journal of Beijing Forestry University, 2015, 37(6): 70-76. doi: 10.13332/j.1000-1522.20140474
Citation: XIA Xiang-you, WANG En-heng, YANG Xiao-yan, CHEN Xiang-wei. Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles[J]. Journal of Beijing Forestry University, 2015, 37(6): 70-76. doi: 10.13332/j.1000-1522.20140474

模拟冻融循环对黑土黏化层孔隙结构的影响

doi: 10.13332/j.1000-1522.20140474
基金项目: 

国家自然科学基金项目(41271293)、青年科学基金项目(41302222)。

详细信息
    作者简介:

    夏祥友,博士生。主要研究方向:土壤侵蚀与土地生产力恢复。Email: xiaxynefu@aliyun.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。责任作者: 陈祥伟,教授,博士生导师。主要研究方向:土壤侵蚀与流域管理。 Email: chenxwnefu@163.com 地址:同上。

    夏祥友,博士生。主要研究方向:土壤侵蚀与土地生产力恢复。Email: xiaxynefu@aliyun.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。责任作者: 陈祥伟,教授,博士生导师。主要研究方向:土壤侵蚀与流域管理。 Email: chenxwnefu@163.com 地址:同上。

Pore characteristics of mollisol argillic horizon under simulated freeze-thaw cycles

  • 摘要: 以东北典型黑土区耕地土壤为研究对象,采用室内模拟冻融以及CT(Computerized tomography)扫描相结合的方法,通过孔隙数目、平均面积、成圆率3个指标的量化与分析,研究了冻融循环对黏化层土壤孔隙特征的影响规律,以期为探明该区土壤侵蚀机理提供科学依据。研究结果表明,冻融循环不同程度地降低了原状土和填充土的孔隙数目和面积,均在循环3次时达到最低值,冻融循环对≥5 mm孔隙影响较为明显。相对原状土而言,前期含水量对黏化层填充土柱孔隙特征的影响较小。黏化层结构对模拟冻融循环的响应特征印证了季节性冻融循环对黑土区黏化层可蚀性的影响,进而诱发土壤侵蚀、促进沟蚀发展的可能。

     

  • [1] GONG Z T. Soil classification of China: theory, method, practice [M]. Beijing: Science Press, 1999.
    [1] 龚子同.中国土壤系统分类:理论、方法、实践[M]. 北京:科学出版社, 1999.
    [2] BULLOCK P, MILFORD M H, CLINE M G. Degradation of argillic horizons in udalf soils of New York State [J]. Soil Science Society of America Journal, 1974, 38 (4):621-628.
    [2] WANG E H. Effect of machinery tillage and seasonal freeze-thaw on soil structure in black soil region [D]. Harbin: Northeast Forestry University, 2001.
    [3] CREMEENS D L, MOKMA D L. Argillic horizon expression and classification in the soils of two Michigan hydrosequences [J]. Soil Science Society of America Journal, 1986, 50(4):1002-1007.
    [4] STOLT M H, RABENHORST M C. Micromorphology of argillic horizons in an upland/tidal marsh catena [J]. Soil Science Society of America Journal, 1991, 55 (2):443-450.
    [5] PERLA A I, JORGE E G. Parent materials, buried soils and fragipans in northwestern Buenos Aires Province, Argentina [J]. Quaternary International, 1998, 51-52: 115-126.
    [6] BLANCO M C, STOOPS G. Genesis of pedons with discontinuous argillic horizons in the Holocene loess mantle of the southern Pampean landscape, Argentina [J]. Journal of South American Earth Sciences, 2007, 23(1): 30-45.
    [7] KARLSTROM E T, OVIATT C G, RANSOM M D. Paleo-environmental interpretation of multiple soil-loess sequence at Milford Reservoir, northeastern Kansas [J]. Catena, 2008, 72(1):113-128.
    [8] ENDALE D M, FISHER D S, SCHOMBERG H H. Soil water regime in space and time in a small Georgia Piedmont Catchment under pasture [J]. Soil Science Society of America Journal, 2006, 70 (1):1-13.
    [9] BERNIER P Y. Variable source areas and storm-flow generation: an update of the concept and a simulation effort [J]. Journal of Hydrology, 1985, 79(3-4): 195-213.
    [10] LYON S W, WALTER M T, MARCHANT P G, et al. Using a topographic index to distribute variable source area runoff predicted with the SCS curve-number equation[J]. Hydrological Processes, 2004, 18 (15):2757-2771.
    [11] PERILLO C A, GUPTA S C, NATER E A, et al. Prevalence and initiation of preferential flow paths in a sandy loam with argillic horizon [J]. Geoderma, 1999, 89(3-4): 307-331.
    [12] SHAW J N, BOSCH D D, WEST L T, et al. Lateral flow in loamy to sandy kandiudults of the Upper Coastal Plain of Georgia (USA) [J]. Geoderma, 2001, 99(1-2):1-25.
    [13] HOPKINS D G, FRANZEN D W. Argillic horizons in stratified drift: Luverne end Moraine, Eastern North Dakota [J]. Soil Science Society of America Journal, 2003, 67(6):1790-1796.
    [14] ZHAO Y S, WANG E H, CRUSE R M, et al. Characterization of seasonal freeze-thaw and potential impacts on soil erosion in Northeast China[J]. Canadian Journal of Soil Science, 2012, 92(3):567-571.
    [15] 王恩姮.机械耕作与季节性冻融对黑土结构的影响[D].哈尔滨:东北林业大学,2011.
    [16] LEHRSCH G A, SOJKA R E, CARTER D L, et al. Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter [J]. Soil Science Society of America Journal, 1991, 55(5): 1401-1406.
    [17] OZTAS T, FAYETORBAY F. Effect of freezing and thawing processes on soil aggregate stability [J]. Catena, 2003, 52(1): 1-8.
    [18] KVAERNØ S H, ØYGARDEN L. The influence of freeze-thaw cycles and soil moisture on aggregate stability of three soils in Norway [J]. Catena, 2006, 67(3): 175-182.
    [19] BENOIT G R. Effect of freeze-thaw cycles on aggregate stability and hydraulic conductivity of three soil aggregate sizes [J]. Soil Science Society of America Proceedings, 1973, 37(1): 3-5.
    [20] BLACKMAN J D. Seasonal variation in the aggregate stability of downland soils[J]. Soil Use and Management, 1992, 8(4):142-150.
    [21] BULLOCK M S, KEMPER W D, NELSON S D. Soil cohesion as affected by freezing, water content, time and tillage [J]. Soil Science Society of America Journal, 1988, 52(3):770-776.
    [22] HENRY H A L. Soil freeze-thaw cycle experiments: trends, methodological weaknesses and suggested improvements [J]. Soil Biology Biochemistry, 2007, 39(5): 977-986.
  • 加载中
计量
  • 文章访问数:  1011
  • HTML全文浏览量:  117
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-25

目录

    /

    返回文章
    返回