Spatial distribution patterns of rare and endangered species richness and hotspot analysis in giant panda distribution areas
-
摘要: 分析物种丰富度格局和热点区是保护生物多样性的有效手段和途径。本文基于珍稀濒危物种名录信息,结合遥感影像、文献信息和专家经验,研究了大熊猫分布区内珍稀濒危物种及中国特有珍稀濒危物种的丰富度空间格局,确定了物种丰富度热点区,分析了大熊猫保护区对热点区保护的有效性。结果表明:大熊猫分布区内,与大熊猫同域分布的珍稀濒危物种有293种,包括哺乳动物109种、鸟类58种、爬行动物18种、两栖动物35种、高等植物73种;其中,IUCN极危物种11种、濒危物种48种、易危物种111种、近危物种74种,列入CITES附录Ⅱ2种,国家一级保护植物7种,国家二级保护植物36种;293种珍稀濒危物种中,133种为中国特有,19种为大熊猫分布区特有。大熊猫分布区中,岷山的文县和平武,邛崃山的汶川、宝兴和康定珍稀濒危物种丰富度最高,达到15~19种/km2,物种密集区呈块状或线状破碎化分布;秦岭山系、岷山山系和邛崃山系为中国特有珍稀濒危物种丰富度最高的集中分布区,丰富度为5~6种/km2;海拔1400~1600m和1800~2000m,分别为珍稀濒危物种和中国特有珍稀濒危物种丰富度最高的海拔区段,物种丰富度达186种和77种;800~2800m是珍稀濒危物种和中国特有珍稀濒危物种分布最密集的海拔范围,分别覆盖了88.4%的珍稀濒危物种和87.2%的中国特有珍稀濒危物种。大熊猫分布区有6个珍稀濒危物种丰富度热点区,占分布区总面积的10.5%,覆盖了分布区85%的珍稀濒危物种;中国特有珍稀濒危物种热点区,占分布区总面积的17.2%,覆盖了85%的中国特有珍稀濒危物种。大熊猫保护区,覆盖了27.6%的珍稀濒危物种热点区和21.4%的中国特有珍稀濒危物种热点区,保护了71.7%的珍稀濒危物种和70.7%的中国特有珍稀濒危物种。本研究结果可为提高大熊猫保护区的有效性和维护大熊猫种群的持续生存提供科学依据。
-
关键词:
- 大熊猫分布区 /
- 珍稀濒危物种 /
- 中国特有珍稀濒危物种 /
- 丰富度格局 /
- 热点区
Abstract: Analyzing spatial distribution pattern of species richness and hotspots is an effective means for protecting biodiversity. We studied the spatial distribution patterns of richness of rare and endangered (RE) species and those endemic RE species to China in the giant panda distribution areas based on the directory of RE species, remote sensing images, data from references and expert experiences. We determined the richness hotspot areas and identified the hotspots of RE species and endemic RE species, and then analyzed the performance of the nature reserves established for giant panda conservation. We found that: 1) 293 RE species occurred in the giant panda distribution areas, including 109 mammals, 58 birds, 18 reptiles, 35 amphibians, 73 higher plants, among which 11 species were Critically Endangered (CR), 48 Endangered (EN), 111 Vulnerable species, 74 Near Threatened on IUCN Red List, and 2 included in CITES Plant Category II, 7 under CategoryⅠof state protected plants, and 36 under Category II of state protected plants, 133 endemic to China and 19 endemic to the giant panda distribution areas; 2) Amongst the giant panda distribution areas, Wenxian and Pingwu in Minshan Mountain, Wenchuan, Baoxing and Kangding in Qionglai Moutain have the richest RE species with 15-19 species/km2, and Qinling, Minshan and Qionglai Mountains have the richest endemic RE species with 5-6 species/km2. For the vertical distribution pattern, the elevation ranges between 1400-1600m and 1800-2000m have the richest RE species (186 species) and endemic RE species richness (77 species), respectively, and 88.4% of RE species and 87.2% of endemic RE species were covered at elevation of 800-2800m; 3) There were six RE species hotspots, which covered 10.5% of the giant panda distribution areas and 85% of the RE species were distributed in the hotspots. At the same time, there were six endemic RE species hotspots, which covered 17.2% of the giant panda distribution area and 85% of the endemic RE species were distributed in the hotspots; 4) The nature reserves established for giant panda covered 27.6% of the RE species hotspots and 21.4% of the endemic RE species hotspots, and protected 71.7% of the RE species and 70.7% of the endemic RE species, respectively. Our results would provide scientific basis for improving effectiveness of giant panda nature reserves and maintaining sustainable existence of the wild giant panda population. -
-
[1] LI G, SHEN Z H, YING J S, et al. The spatial pattern of species richness and diversity centers of gymnosperm in China[J]. Biodiversity Science, 2009, 17(3), 272-279.
[1] MYERS N. Threatened biotas: ‘hot spots' in tropical forests[J]. Environmentalist, 1988, 8(3): 187-208.
[2] LUAN X F, HUANG W N, WANG X L, et al. Identification of hotspots and gaps for biodiversity conservation in Northeast China based on a systematic conservation planning methodogy[J]. Acta Ecologica Sinica, 2009, 29(1): 144-150.
[2] MYERS N. The biodiversity challenge: expanded hot-spots analysis[J]. Environmentalist, 1990, 10(4): 243-256.
[3] BRUMMITT N, LUGHADHA E N. Biodiversity: where's hot and where's not[J]. Conservation Biology, 2003, 17(5): 1442-1448.
[3] XU P, WANG Y K, YANG J F, et al. Identification of hotspots for biodiversity conservation in the Wenchuan earthquake-hit area[J]. Acta Ecologica Sinica, 2013, 33(3): 718-725.
[4] POSSINGHAM H P, WILSON K A. Biodiversity: turning up the heat on hotspots[J]. Nature,2005, 436: 919-920.
[4] XU W H, LUO C, OUYANG Z Y, et al. Designing regional nature reserves group : the case study of Qinling Mountain Range, China[J]. Acta Ecologica Sinica, 2010, 30(6): 1648-1654.
[5] HU J C. Research and progress in biology of the giant panda[M]. Chengdu: Sichuan Publishing House of Science & Technology, 1990.
[5] MYERS N, MITTERMEIER R A, MITTERMEIER C G, et al. Biodiversity hotspots for conservation priorities[J]. Nature, 2000, 403: 853-858.
[6] State Forestry Administration.The 3rd national survey report on giant panda in China[M]. Beijing: Science Press, 2006.
[7] LI J Q, SHEN G Z, ZHAO Z J, et al. The habitat of giant pandas[M]. Beijing: Higher Education Press, 2012.
[7] DUNSTAN P K, BAX N J, FOSTER S D, et al. Identifying hotspots for biodiversity management using rank abundance distributions[J]. Diversity and Distributions, 2012, 18(1): 22-32.
[8] WANG S, XIE Y. China species red list: Vol.Ⅱ: Vertebrate[M]. Beijing: Higher Education Press, 2009.
[8] PARVIAINEN M, MARMION M, LUOTO M, et al. Using summed individual species models and state-of-the-art modelling techniques to identify threatened plant species hotspots[J]. Biological Conservation, 2009, 142(11): 2501-2509.
[9] Division of the State Forestry Bureau Wild Animals and Plants Protection and Nature Reserve Management, Institute of Botany, the Chinese Academy of Science. Rare and endangered plants in China[M]. Beijing: China Forestry Publishing House, 2013.
[9] 李果, 沈泽昊, 应俊生, 等. 中国裸子植物物种丰富度空间格局与多样性中心[J]. 生物多样性, 2009, 17(3): 272-279. [10] 栾晓峰, 黄维妮, 王秀磊, 等. 基于系统保护规划方法东北生物多样性热点地区和保护空缺分析[J]. 生态学报, 2009, 29(1): 144-150. [10] ZHANG Y B, GUO L L, WANG W, et al. Spatial distribution patterns of species richness and hotspots of protected plants in Qinling Moutain[J]. Acta Ecologica Sinica, 2014, 34(8): 2109-2117.
[11] ZHANG L, XU W H, OUYANG Z Y, et al. Determination of priority nature conservation areas and human disturbances in the Yangtze River Basin, China[J]. Journal for Nature Conservation, 2014, 22(4): 326-336.
[11] LI L, ZHOU K X, GUO L. Criteria and method for assessing the threatened terrestrial ecosystems of China[J]. Jonual of Safety and Environment, 2014, 14(2): 259-265.
[12] LIN X, WANG Z H, TANG Z Y, et al. Geographic patterns and environmental correlates of terrestrial mammal species richness in China[J]. Biodiversity Science, 2009, 17(6): 652-663.
[12] 徐佩, 王玉宽, 杨金凤, 等. 汶川地震灾区生物多样性热点地区分析[J]. 生态学报, 2013, 33(3): 718-725. [13] United Nations Educatio, Scientific and Cultural Organization. Sichuan giant panda sanctuaries-wolong, Mt Siguniang and Jiajin Mountains[EB/OL]. [2014-10-08]http:∥whc.unesco.org/en/list/1213.
[13] ZHANG Y B, MA K P. Geographic distribution characteristics of the national key protected wild plants in China[J]. Chinese Journal of Applied Ecology, 2008, 19(8): 1670-1675.
[14] WU B, ZHU C Q, LI D Q, et al. Setting biodiversity conservation priorities in the Forests of the Upper Yangtze Ecoregion based on ecoregion conservation methodology[J]. Biodiversity Science, 2006, 14(2): 87-97.
[14] XU W H, OUYANG Z Y, VINA A, et al. Designing a conservation plan for protecting the habitat for giant pandas in the Qionglai mountain range, China[J]. Diversity and Distributions, 2006, 12(5): 610-619.
[15] SHEN G Z, FENG C Y, XIE Z Q, et al. Proposed conservation landscape for giant pandas in the Minshan Mountains, China[J]. Conservation Biology, 2008, 22(5): 1144-1153.
[15] ZHANG L, OUYANG Z Y, XIAO Y, et al. Priority areas for biodiversity conservation in Hainan Island: evaluation and systematic conservation planning[J]. Chinese Journal of Applied Ecology, 2011, 22(8): 2105-2112.
[16] 徐卫华, 罗翀, 欧阳志云, 等. 区域自然保护区群规划: 以秦岭山系为例[J]. 生态学报, 2010, 30(6): 1648-1654. [17] POUZOLS F M, TOIVONEN T, MININ E D, et al. Global protected area expansion is compromised by projected land-use and parochialism[J]. Nature, 2014, 516: 383-386.
[18] WATSON J E, DUDLEY N, SEGAN D B, et al. The performance and potential of protected areas[J]. Nature, 2014, 515: 67-73.
[19] XU W H, VINA A, QI Z X, et al. Evaluating conservation effectiveness of nature reserves established for surrogate species: case of a giant panda nature reserve in Qinling Mountains, China[J]. Chinese Geographical Science, 2014, 24(1):60-70.
[20] 胡锦矗. 大熊猫生物学研究与进展[M]. 成都: 四川科学技术出版社, 1990. [21] 国家林业局. 全国第三次大熊猫调查报告[M]. 北京: 科学出版社, 2006. [22] 李俊清, 申国珍, 赵志江,等. 大熊猫栖息地研究[M]. 北京: 高等教育出版社, 2012. [23] 汪松, 谢焱. 中国物种红色名录: 第二卷: 脊椎动物[M]. 北京: 高等教育出版社, 2009. [24] 国家林业局野生动植物保护与自然保护区管理司, 中国科学院植物研究所. 中国珍稀濒危植物图鉴[M]. 北京: 中国林业出版社, 2013. [25] 张殷波, 郭柳琳, 王伟, 等. 秦岭重点保护植物丰富度空间格局与热点地区[J]. 生态学报, 2014, 34(8): 2109-2117. [26] 李林, 周可新, 郭泺. 中国陆地生态系统受威胁等级评价[J]. 安全与环境学报, 2014, 14(2): 259-265. [27] 林鑫, 王志恒, 唐志尧, 等. 中国陆栖哺乳动物物种丰富度的地理格局及其与环境因子的关系[J]. 生物多样性, 2009, 17(6): 652-663. [28] 张殷波, 马克平. 中国国家重点保护野生植物的地理分布特征[J]. 应用生态学报, 2008, 19(8): 1670-1675. [29] 吴波, 朱春全, 李迪强, 等. 长江上游森林生态区生物多样性保护优先区确定:基于生态区保护方法[J]. 生物多样性, 2006, 14(2): 87-97. [30] GASTON K J. Global patterns in biodiversity[J]. Nature, 2000, 405: 220-227.
[31] PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3): 231-259.
[32] FRANKLIN J. Mapping species distributions: spatial inference and prediction[M]. Cambridge: Cambridge University Press, 2009.
[33] GUO Q H, LIU Y. ModEco: an integrated software package for ecological niche modeling[J]. Ecography, 2010, 33(4): 637-642.
[34] TOWNSEND P A, PAPES M, EATON M. Transferability and model evaluation in ecological niche modeling: a comparison of GARP and Maxent[J]. Ecography, 2007, 30(4): 550-560.
[35] COSTA G C, NOGUEIRA C, MACHADO R B, et al. Sampling bias and the use of ecological niche modeling in conservation planning: a field evaluation in a biodiversity hotspot[J]. Biodiversity and Conservation, 2010, 19(3): 883-899.
[36] BARVE N, BARVE V, JIMENEZ-VALVERDE A, et al. The crucial role of the accessible area in ecological niche modeling and species distribution modeling[J]. Ecological Modelling, 2011, 222(11): 1810-1819.
[37] NAIDOO R, ADAMOWICZ W L. Modeling opportunity costs of conservation in transitional landscapes[J]. Conservation Biology, 2006, 20(2): 490-500.
[38] NAIDOO R, IWAMURA T. Global-scale mapping of economic benefits from agricultural lands: implications for conservation priorities[J]. Biological Conservation, 2007, 140(1): 40-49.
[39] BRYAN B, KING D, WARD J. Modelling and mapping agricultural opportunity costs to guide landscape planning for natural resource management[J]. Ecological Indicators, 2011, 11(1): 199-208.
[40] 张路, 欧阳志云, 肖燚, 等. 海南岛生物多样性保护优先区评价与系统保护规划[J]. 应用生态学报, 2011, 22(8): 2105-2112. [41] LAMOREUX J F, MORRISON J C, RICKETTS T H, et al. Global tests of biodiversity concordance and the importance of endemism[J]. Nature, 2005, 440: 212-214.
-
期刊类型引用(0)
其他类型引用(1)
计量
- 文章访问数: 2015
- HTML全文浏览量: 343
- PDF下载量: 51
- 被引次数: 1