高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

秋茄硫氧还蛋白调控活性氧平衡增强烟草耐盐机制研究

荆晓姝 孙苑玲 向敏 钱泽勇 郎涛 赵瑞 沈昕 陈少良

荆晓姝, 孙苑玲, 向敏, 钱泽勇, 郎涛, 赵瑞, 沈昕, 陈少良. 秋茄硫氧还蛋白调控活性氧平衡增强烟草耐盐机制研究[J]. 北京林业大学学报, 2015, 37(6): 17-26. doi: 10.13332/j.1000-1522.20150010
引用本文: 荆晓姝, 孙苑玲, 向敏, 钱泽勇, 郎涛, 赵瑞, 沈昕, 陈少良. 秋茄硫氧还蛋白调控活性氧平衡增强烟草耐盐机制研究[J]. 北京林业大学学报, 2015, 37(6): 17-26. doi: 10.13332/j.1000-1522.20150010
JING Xiao-shu, SUN Yuan-ling, XIANG Min, QIAN Ze-yong, LANG Tao, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Overexpression of KcTrxf in tobacco enhances salt tolerance through the regulation of ROS homeostasis under NaCl stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 17-26. doi: 10.13332/j.1000-1522.20150010
Citation: JING Xiao-shu, SUN Yuan-ling, XIANG Min, QIAN Ze-yong, LANG Tao, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Overexpression of KcTrxf in tobacco enhances salt tolerance through the regulation of ROS homeostasis under NaCl stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 17-26. doi: 10.13332/j.1000-1522.20150010

秋茄硫氧还蛋白调控活性氧平衡增强烟草耐盐机制研究

doi: 10.13332/j.1000-1522.20150010
基金项目: 

国家自然科学基金项目(31270654、31160150)、教育部科学技术研究(科学技术类)项目(113013A)、人事部留学人员科技活动项目(2012001)、高等学校学科创新引智计划项目(111 Project, B13007)、教育部创新团队发展计划项目(IRT13047)。

详细信息
    作者简介:

    荆晓姝,博士生。主要研究方向:树木抗逆分子与生理。Email:johncy@126.com 地址:100083 北京市清华东路35号北京林业大学生物科学与技术学院。责任作者: 陈少良,教授,博士生导师。主要研究方向:树木抗逆生理。Email:lsche@bjfu.edu.cn 地址:同上。

    荆晓姝,博士生。主要研究方向:树木抗逆分子与生理。Email:johncy@126.com 地址:100083 北京市清华东路35号北京林业大学生物科学与技术学院。责任作者: 陈少良,教授,博士生导师。主要研究方向:树木抗逆生理。Email:lsche@bjfu.edu.cn 地址:同上。

Overexpression of KcTrxf in tobacco enhances salt tolerance through the regulation of ROS homeostasis under NaCl stress

  • 摘要: 硫氧还蛋白(Trxs)能调控细胞的氧化还原状态,在木本植物中Trxs与耐盐性的关系尚未研究。本文克隆了非泌盐红树秋茄的硫氧还蛋白基因KcTrxf,并研究KcTrxf在植物耐盐性中的作用。qRT-PCR结果显示,秋茄在盐胁迫下KcTrxf表达量上调,并且叶片中的非蛋白巯基(NPTs)的含量上升。KcTrxf基因的开放阅读框(ORF)长585 bp,编码194个氨基酸,是一类定位于叶绿体中的f类硫氧还蛋白。将重组的35S:KcTrxf表达载体转入模式植物烟草中进行耐盐性分析,结果表明,KcTrxf提高了烟草的耐盐性。 NaCl处理下,野生型烟草叶片中膜质氧化,并且积累大量活性氧,使叶绿素含量以及叶绿素a/b比值明显下降。转基因烟草一方面通过提高过氧化氢酶(CAT)以及抗坏血酸过氧化物酶(APX)的活性来清除H2O2,另一方面通过调节抗坏血酸-谷胱甘肽循环中(AsA-GSH cycle)的关键酶单脱氧抗坏血酸还原酶(MDAR)以及谷胱甘肽还原酶(GR)的活性来增加还原型谷胱甘肽水平,同时,还增加了叶片中非蛋白巯基的含量,进而清除活性氧,减少盐害引起氧化胁迫。因此,盐胁迫下转基因烟草中的叶绿素含量以及叶绿素a/b维持较高水平,从而维持较高的光合速率和生长状态。

     

  • [1] SCHURMANN P, BUCHANAN B B. The ferredoxin/thioredoxin system of oxygenic photosynthesis[J]. Antioxidants and Redox Signaling, 2008, 10(7): 1235-1273.
    [2] MEYER Y, SIALA W, BASHANDY T, et al. Glutaredoxins and thioredoxins in plants[J]. Biochimica et Biophysica Acta-Molecular Cell Research, 2008, 1783(4): 589-600.
    [3] BUCHANAN B B, BALMER Y. Redox regulation: a broadening horizon[J]. Annual Review of Plant Biology, 2005, 56: 187-220.
    [4] GELHAYE E, ROUHIER N, NAVROT N, et al. The plant thioredoxin system[J]. Cellular and Molecular Life Sciences, 2005, 62(1): 24-35.
    [5] BALMER Y, VENSEL W H, TANAKA C K, et al. Thioredoxin links redox to the regulation of fundamental processes of plant mitochondria[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(8): 2642-2647.
    [6] WONG J H, CAL N, BALMER Y, et al. Thioredoxin targets of developing wheat seeds identified by complementary proteomic approaches[J]. Phytochemistry, 2004, 65(11): 1629-1640.
    [7] MARCHAND C, LE MARECHAL P, MEYER Y, et al. New targets of Arabidopsis thioredoxins revealed by proteomic analysis[J]. Proteomics, 2004, 4(9): 2696-2706.
    [8] MARCHAND C H, VANACKER H, COLLIN V, et al. Thioredoxin targets in Arabidopsis roots[J]. Proteomics, 2010, 10(13):2418-2428.
    [9] ALKHALFIOUI F, RENARD M, MONTRICHARD F. Unique properties of NADP-thioredoxin reductase C in legumes[J]. Journal of Experimental Botany, 2007, 58(5): 969-978.
    [10] BALMER Y, VENSEL W H, CAI N, et al. A complete ferredoxin/thioredoxin system regulates fundamental processes in amyloplasts[J]. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(8): 2988-2993.
    [11] MEYER Y, REICHHELD J P, VIGNOLS F. Thioredoxins in Arabidopsis and other plants[J]. Photosynthesis Research, 2005, 86(3): 419-433.
    [12] PAGANO E A, CHUECA A, LÓPEZ-GORGÉ J. Expression of thioredoxins f and m, and of their targets fructose-1, 6-bisphosphatase and NADP-malate dehydrogenase, in pea plants grown under normal and light/temperature stress conditions[J]. Journal of Experimental Botany, 2000, 51(348): 1299-1307.
    [13] NEE G, ZAFFAGNINI M, TROST P, et al. Redox regulation of chloroplastic glucose-6-phosphate dehydrogenase: a new role for f-type thioredoxin[J]. FEBS Letter, 2009, 583(17): 2827-2832.
    [14] ANDERSON L E, CHIN H M, GUPTA V K. Modulation of chloroplast fructose-1, 6-bisphosphatase activity by light[J]. Plant Physiology, 1979, 64(3): 491-494.
    [15] DE DIOS BARAJAS-LÓPEZ J, SERRATO A J, CAZALIS R, et al. Circadian regulation of chloroplastic f and m thioredoxins through control of the CCA1 transcription factor[J]. Journal of Experimental Botany, 2011, 62(6): 2039-2051.
    [16] LUO T, FAN T T, LIU Y N, et al. Thioredoxin redox regulates ATPase activity of magnesium chelatase chli subunit and modulates redox-mediated signaling in tetrapyrrole biosynthesis and homeostasis of reactive oxygen species in pea plants[J]. Plant Physiology, 2012, 159(1): 118-130.
    [17] COLLIN V, ISSAKIDIS-BOURGUET E, MARCHAND C, et al. The Arabidopsis plastidial thioredoxins:new functions and new insights into specificity[J]. Journal of Biological Chemistry, 2003, 278(26): 23747-23752.
    [18] NAVROT N, COLLIN V, GUALBERTO J, et al. Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses[J]. Plant Physiology, 2006, 142(4): 1364-1379.
    [19] LAMKEMEYER P, LAXA M, COLLIN V, et al. Peroxiredoxin Q of Arabidopsis thaliana is attached to the thylakoids and functions in context of photosynthesis[J]. Plant Journal, 2006, 45(6): 968-981.
    [20] ASADA K. Functions of the water-water cycle in chloroplasts[J]. Plant and Cell Physiology, 2004, 45: S11.
    [21] MILLER G, SUZUKI N, CIFTCI-YILMAZ S, et al. Reactive oxygen species homeostasis and signalling during drought and salinity stresses[J]. Plant Cell and Environment, 2010, 33(4): 453-467.
    [22] APEL K, HIRT H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction[J]. Annual Review of Plant Biology, 2004, 55: 373-399.
    [23] JIANG Y P, CHENG F, ZHOU Y H, et al. Cellular glutathione redox homeostasis plays an important role in the brassinosteroid-induced increase in CO2 assimilation in Cucumis sativus[J]. New Phytologist, 2012, 194(4): 932-943.
    [24] LI N Y, CHEN S L, ZHOU X Y, et al. Effect of NaCl on photosynthesis, salt accumulation and ion compartmentation in two mangrove species, Kandelia candel and Bruguiera gymnorhiza[J]. Aquatic Botany, 2008, 88(4): 303-310.
    [25] LI N, LI C, CHEN S, et al. Abscisic acid, calmodulin response to short term and long term salinity and the relevance to NaCl-induced antioxidant defense in two mangrove species[J]. Open Forest Science Journal, 2009, 2: 48-58.
    [26] LU Y, LI N, SUN J, et al. Exogenous hydrogen peroxide, nitric oxide and calcium mediate root ion fluxes in two non-secretor mangrove species subjected to NaCl stress[J]. Tree Physiology, 2013, 33(1): 81-95.
    [27] LANG T, SUN H, LI N, et al. Multiple signaling networks of extracellular ATP, hydrogen peroxide, calcium, and nitric oxide in the mediation of root ion fluxes in secretor and non-secretor mangroves under salt stress[J]. Aquatic Botany, 2014, 119: 33-43.
    [28] HOAGLAND D R, ARNON D I. The water-culture method for growing plants without soil [J]. Circular of California Agricultural Experiment Station, 1950, 347(2): 32.
    [29] DEL LONGO O T, GONZÁLEZ C A, PASTORI G M, et al. Antioxidant defences under hyperoxygenic and hyperosmotic conditions in leaves of two lines of maize with differential sensitivity to drought[J]. Plant and Cell Physiology, 1993, 34(7): 1023-1028.
    [30] WAN C Y, WILKINS T A. A modified hot borate method significantly enhances the yield of high-quality RNA from cotton(Gossypium hirsutum L.)[J]. Analytical Biochemistry, 1994, 223: 7-12.
    [31] EMANUELSSON O, NIELSEN H, HEIJNE G V. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites[J]. Protein Science, 1999, 8: 978-984.
    [32] EMANUELSSON O, BRUNAK S, VON HEIJNE G, et al. Locating proteins in the cell using TargetP, SignalP and related tools[J]. Nature Protocol, 2007, 2: 953-971.
    [33] YOO S D, CHO Y H, SHEEN J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis[J]. Nature Protocol, 2007, 2(7): 1565-1572.
    [34] HORSCH R B, FRY J E, HOFFMANN N L, et al. A simple and general method for transferring genes into plants[J]. Science, 1985, 227: 1229-1231.
    [35] WELLBURN A R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution[J]. Journal of Plant Physiology, 1994, 144: 307.
    [36] LICHTENTHALER H K. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes[J]. Methods Enzymol,1987, 148: 350-382.
    [37] WANG R G, CHEN S L, ZHOU X Y, et al. Ionic homeostasis and reactive oxygen species control in leaves and xylem sap of two poplars subjected to NaCl stress[J]. Tree Physiology, 2008, 28(6): 947-957.
    [38] HEATH R L, PACKER L. Photoperoxidation in isolated chloroplasts(Ⅰ): kinetics and stoichiometry of fatty acid peroxidation[J]. Archives of Biochemistry and Biophysics, 1968, 125(1): 189-198.
    [39] AEBI H. Catalase in vitro[J]. Methods Enzymol, 1984, 105: 121-126.
    [40] NAKANO Y, ASADA K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts[J]. Plant Cell Physiology, 1981, 22: 867-880.
    [41] HALLIWELL B, FOYER C H. Ascorbic acid, metal ions and the superoxide radical[J]. Biochemical Journal, 1976, 155(3): 697-700.
    [42] HOSSAIN M A, ASADA K. Monodehydroascorbate reductase from cucumber is a flavin adenine dinucleotide enzyme[J]. Journal of Biological Chemistry, 1985, 260(24): 12920-12926.
    [43] DUTILLEUL C, GARMIER M, NOCTOR G, et al. Leaf mitochondria modulate whole cell redox homeostasis, set antioxidant capacity, and determine stress resistance through altered signaling and diurnal regulation[J]. The Plant Cell, 2003, 15(5): 1212-1226.
    [44] GRIFFITH O W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine[J]. Analytical Biochemistry, 1980,106(1): 207-212.
    [45] FOYER C H, NOCTOR G. Oxidant and antioxidant signalling in plants: a re-evaluation of the concept of oxidative stress in a physiological context[J]. Plant Cell and Environment, 2005, 28(8): 1056-1071.
    [46] MITTLER R, VANDERAUWERA S, SUZUKI N, et al. ROS signaling: the new wave?[J]. Trends in Plant Science, 2011, 16(6): 300-309.
    [47] STEPIEN P, JOHNSON G N. Contrasting responses of photosynthesis to salt stress in the glycophyte Arabidopsis and the halophyte Thellungiella: role of the plastid terminal oxidase as an alternative electron sink[J]. Plant Physiology, 2009, 149(2): 1154-1165.
    [48] CHEN J H, JIANG H W, HSIEH E J, et al. Drought and salt stress tolerance of an Arabidopsis glutathione S-transferase U17 knockout mutant are attributed to the combined effect of glutathione and abscisic acid[J]. Plant Physiology, 2012, 158(1): 340-351.
  • 加载中
计量
  • 文章访问数:  885
  • HTML全文浏览量:  138
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-08

目录

    /

    返回文章
    返回