• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

基于机载激光雷达的寒温带典型森林高度制图研究

穆喜云, 张秋良, 刘清旺, 庞勇, 胡凯龙

穆喜云, 张秋良, 刘清旺, 庞勇, 胡凯龙. 基于机载激光雷达的寒温带典型森林高度制图研究[J]. 北京林业大学学报, 2015, 37(7): 58-67. DOI: 10.13332/j.1000-1522.20150016
引用本文: 穆喜云, 张秋良, 刘清旺, 庞勇, 胡凯龙. 基于机载激光雷达的寒温带典型森林高度制图研究[J]. 北京林业大学学报, 2015, 37(7): 58-67. DOI: 10.13332/j.1000-1522.20150016
MU Xi-yun, ZHANG Qiu-liang, LIU Qing-wang, PANG Yong, HU Kai-long. Typical forest height mapping in cold temperate zone using airborne LiDAR data[J]. Journal of Beijing Forestry University, 2015, 37(7): 58-67. DOI: 10.13332/j.1000-1522.20150016
Citation: MU Xi-yun, ZHANG Qiu-liang, LIU Qing-wang, PANG Yong, HU Kai-long. Typical forest height mapping in cold temperate zone using airborne LiDAR data[J]. Journal of Beijing Forestry University, 2015, 37(7): 58-67. DOI: 10.13332/j.1000-1522.20150016

基于机载激光雷达的寒温带典型森林高度制图研究

基金项目: 

&#x0201c

863&#x0201d

国家高技术研究发展计划项目(2013AA12A302)、&#x0201c

十二五&#x0201d

国家科技支撑计划项目(2012BAH34B0203)、国家自然科学基金青年科学基金项目(41201334)、&#x0201c

十二五&#x0201d

国家科技支撑计划项目(2012BAD22B0204)

详细信息
    作者简介:

    穆喜云,博士生。主要研究方向:林业遥感。Email: xiyunmuyd@126.com 地址:100091 北京市海淀区颐和园后中国林业科学研究院资源信息研究所。

    责任作者:

    张秋良,教授,博士生导师。主要研究方向:森林经理、森林生态。 Email: 18686028468@163.com 地址:010018 内蒙古呼和浩特市内蒙古农业大学东区林学院森林经理教研室。

Typical forest height mapping in cold temperate zone using airborne LiDAR data

  • 摘要: 以内蒙古根河市潮查林场境内的寒温带兴安落叶松原始林及其次生林为研究对象,利用机载激光雷达点云数据与地面调查的66个样地数据,采用不同算法计算样地实测树高(Lorey's高、冠幅面积加权树高和算术平均高)分别与基于双正切角树冠识别算法获取的LiDAR估测高(冠幅面积加权树高、算术平均高)和基于点云提取的百分位高构建树高回归模型(冠幅面积加权树高模型、算术平均树高模型和LiDAR百分位树高模型)。对比不同树高模型的训练精度与估测精度的差异,探讨双正切角树冠识别算法对本研究区的适用性;同时了解冠幅面积加权的样地实测树高与Lorey's高对林分平均高代表性的差异,确定最优解释变量,筛选最优树高模型,计算研究区森林高度空间分布图,为后续生物量和碳储量研究提供参考数据。结果表明:样地冠幅面积加权树高的模型训练精度和估测精度与Lorey's高的结果一致性较好,略低于Lorey's高的估测结果。LiDAR百分位树高模型中的50%分位高与样地实测树高相关性显著且回归模型拟合效果较好,其中,以Lorey's高为样地实测树高时模型的R2=0.869、RMSE=1.366m;以冠幅面积加权树高为样地实测树高时模型的R2=0.839、RMSE=1.392m;Lorey's高的50%分位高模型的估测精度最高,各独立验证样本点估测精度均高于85%,平均估测精度为94.73%,最高估测精度可达99.78%,其中混交林平均估测精度(96.72%)高于针叶林的平均估测精度(93.58%)。因此,选择Lorey's高的50%分位高模型计算研究区的森林高度空间分布。
    Abstract: Based on the airborne LiDAR point cloud data and 66 sample plots data from field inventory of Chaocha Forest Farm in Genhe City, Inner Mongolia, we set the cold temperate primary and secondary forests as research subjects. The model training accuracy and estimating accuracy of different forest height models were compared (crown area weighted height model, arithmetic mean height model, LiDAR percentile height model), which were generated by field-measured forest height (Lorey's height, crown area weighted height, arithmetic mean height), LiDAR crown area weighted height, LiDAR arithmetic mean height and LiDAR percentile height, respectively. LiDAR crown area weighted height and LiDAR arithmetic mean height were extracted by double tangent tree crown recognition algorithm, and LiDAR percentile height was extracted from LiDAR point cloud directly. Then we investigated the applicability of the double tangent tree crown recognition algorithm in the study area, revealed the difference between Lorey's height and crown area weighted height, and determined the optimal explanatory variables and selected the optimal forest height model. Afterwards, the optimal tree height model was used to calculate the spatial distribution of forest height in the study area, which would provide reference data for subsequent studies of biomass and carbon storage. The results showed that the training accuracy and estimating accuracy of the field crown area weighted forest height model were well consistent with Lorey's height, yet slightly lower than the results of Lorey's height. And 50% percentile height was well fitted with the field-measured height (R2 = 0.869, RMSE = 1.366m for Lorey's height, and R2 = 0.839, RMSE = 1.392m for crown area weighted height). Estimating accuracy of each independently validated sample plot was all higher than 85%, with the average accuracy of 94.73% and the highest accuracy of 99.78%. The average estimating accuracy for mixed forests was 96.72%, higher than that for coniferous forests, 93.58%. On this basis, we selected the 50% percentile forest height model of Lorey's height as the optimal model and used it to calculate forest height and map its spatial distribution.
  • [1]

    THOMAS R Q, HURTT G C, DUBAYAH R, et al. Using lidar data and a height-structured ecosystem model to estimate forest carbon stocks and fluxes over mountainous terrain[J]. Canadian Journal of Remote Sensing, 2008, 34(2): 351-363.

    [1]

    HE Q S, CHEN E X, CAO C X, et al. A study of forest parameters mapping technique using airborne LiDAR data [J]. Advances in Earth Science,2009, 24(7):748-755.

    [2]

    ZHAO F, PANG Y, LI Z Y, et al. Extraction of individual tree height using a combination of aerial digital camera imagery and LiDAR[J].Science Silvae Sinicae, 2009, 45(10): 81-87.

    [2]

    DUBAYAH R O, DRAKE J B. Lidar remote sensing for forestry [J]. Journal of Forestry, 2000, 98(6): 44-46.

    [3]

    PATENAUDE G, MILNE R, DAWSON T P. Synthesis of remote sensing approaches for forest carbon estimation: reporting to the Kyoto Protocol [J]. Environmental Science & Policy, 2005, 8(2): 161-178.

    [3]

    LIU F, YANG Z G, GONG J Y. The recognition and parameter inversion of individual trees based on LiDAR [J]. Chinese Agricultural Science Bulletin, 2012, 28(1):80-84.

    [4]

    LIU Q W, LI Z Y, CHEN E X, et al. Extracting height and crown of individual tree using airborne LiDAR data [J]. Journal of Beijing Forestry University, 2008, 30(6):83-89.

    [4]

    ANDERSON H E, REUTEBUCH S E, MCGAUGHEY R J. A rigorous assessment of tree height measurements obtained using airborne lidar and conventional field methods [J]. Canadian Journal of Remote Sensing, 2006, 32(5): 355-366.

    [5]

    WILLIAMS M S, SCHREUDER H T. Guidelines for choosing volume equations in the presence of measurement error in height [J]. Canadian Journal of Forest Research, 2000, 30(2): 306-310.

    [5]

    CAO L, DAI J S, XU J X, et al. Optimized extraction of forest parameters in subtropical forests based on airborne small footprint LiDAR technology [J]. Journal of Beijing Forestry University, 2014, 36(5):13-21.

    [6]

    ZHAO F, LI Z Y, WANG Y S, et al. The application of LiDAR data in forest [J].Remote Sensing Information,2008(1):106-110.

    [6]

    HOUGHTON R A, HALL F, GOETZ S J. Importance of biomass in the global carbon cycle [J]. Journal of Geophysical Research, 2009, 114(G00E03).

    [7]

    PANG Y, ZHAO F, LI Z Y, et al. Forest height inversion using airborne Lidar technology [J]. Journal of Remote Sensing, 2008,12(1): 152-158.

    [7]

    MEANS J E, ACKER S A, FITT B J, et al. Predicting forest stand characteristics with airborne scanning lidar [J]. Photogrammetric Engineering and Remote Sensing, 2000, 66(11): 1367-1372.

    [8]

    LEFSKY M A, COHEN W B, HARDING D J, et al. LiDAR remote sensing of above-ground biomass in three biomes [J]. Global Ecology and Biogeography, 2002,11(5): 393-399.

    [8]

    WU D, FAN W Y. Forest canopy height estimation using LiDAR and optical multi-angler data [J]. Journal of Beijing Forestry University, 2014, 36(4):8-15.

    [9]

    YU X, HYYPPA J, KUKKO A, et al. Change detection techniques for canopy height growth measurements using airborne laser scanner data [J]. Photogrammetric Engineering and Remote Sensing, 2006, 72(12): 1339-1348.

    [10]

    YU X, HYYPPA J, KAARTINEN H, et al. Obtaining plotwise mean height and volume growth in boreal forests using multi-temporal laser surveys and various change detection techniques[J]. International Journal of Remote Sensing, 2008, 29(5): 1367-1386.

    [11]

    MASS H G, BIENERT A, SCHELLER S, et al. Automatic forest inventory parameter determination from terrestrial laser scanner data [J]. International Journal of Remote Sensing, 2008, 29(5): 1579-1593.

    [12]

    COTE J F, FOURNIER R A, EGLI R. An architectural model of trees to estimate forest structural attributes using terrestrial LiDAR[J]. Environmental Modelling and Software, 2011, 26(6): 761-777.

    [13]

    NAESSET E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data [J]. Remote Sensing of Environment, 2002, 80(1): 88-99.

    [14]

    LEFSKY M A, COHEN W B, ACKER S A, et al. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-fir western hemlock forests [J]. Remote Sensing of Environment, 1999,70(3): 339-361.

    [15]

    NAESSET E. Determination of mean tree height of forest stands using airborne laser scanner data [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 1997, 52(2): 49-56.

    [16] 何祺胜,陈尔学,曹春香,等. 基于LiDAR数据的森林参数反演方法研究[J].地球科学进展,2009,24(7):748-755.
    [17] 赵峰,庞勇,李增元,等. 机载激光雷达和航空数码影像单木树高提取[J].林业科学,2009,45(10):81-87.
    [18] 刘峰,杨志高,龚健雅. 利用机载激光雷达的林木识别与参数反演[J].中国农学通报,2012,28(1):80-84.
    [19] 刘清旺,李增元,陈尔学,等. 利用机载激光雷达数据提取单株木树高和冠幅[J].北京林业大学学报,2008,30(6):83-89.
    [20] 曹林,代劲松,徐建新,等. 基于机载小光斑LiDAR技术的亚热带森林参数信息优化提取[J].北京林业大学学报, 2014,36(5):13-21.
    [21] 赵峰,李增元,王韵晟,等. 机载激光雷达(LiDAR)数据在森林资源调查中的应用综述[J].遥感信息,2008(1): 106-110.
    [22] 庞勇,赵峰,李增元,等. 机载激光雷达平均树高提取研究[J].遥感学报,2008,12(1):152-158.
    [23]

    MCCOMBS J W, ROBERTS S D, EVANS D L. Influence of using LiDAR and multispectral imagery on remotely sensed estimates of stand density and mean tree height in a managed loblolly pine plantation [J]. Forest Science, 2003, 49(3): 457-466.

    [24]

    PARKER R C, EVANS D L. An application of LiDAR in a double sample forest inventory [J].Western Journal of Applied Forestry, 2004, 19(2): 95-101.

    [25]

    BOUDREAU J, NELSON R F, MARGOLIS H A, et al. Regional above ground forest biomass using airborne and spaceborne LiDAR in Quebec [J].Remote Sensing of Environment, 2008,112(10):3876-3890.

    [26] 吴迪, 范文义. 激光雷达协同多角度光学遥感数据反演树高[J].北京林业大学学报,2014,36(4):8-15.
  • 期刊类型引用(6)

    1. 李梅,刘清旺,冯益明,李增元. 无人机激光雷达人工林林分高估测模型分析. 遥感学报. 2022(12): 2665-2678 . 百度学术
    2. 刘欢,王玥,艾明耀. 融合LiDAR点云与高分影像的单木检测方法研究. 地理空间信息. 2021(10): 1-4+149 . 百度学术
    3. 赵勋,岳彩荣,李春干,张丽梅,谷雷. 基于机载LiDAR数据估测林分平均高. 林业科学研究. 2020(04): 59-66 . 百度学术
    4. 尤号田,邢艳秋,彭涛,丁建华. 机载LiDAR航带旁向重叠对针叶林结构参数估测的影响. 林业科学. 2018(06): 109-118 . 百度学术
    5. 胡凯龙,刘清旺,庞勇,李梅,穆喜云. 基于机载激光雷达校正的ICESat/GLAS数据森林冠层高度估测. 农业工程学报. 2017(16): 88-95 . 百度学术
    6. 张王菲,陈尔学,李增元,赵磊,姬永杰. 干涉、极化干涉SAR技术森林高度估测算法研究进展. 遥感技术与应用. 2017(06): 983-997 . 百度学术

    其他类型引用(10)

计量
  • 文章访问数:  1802
  • HTML全文浏览量:  295
  • PDF下载量:  29
  • 被引次数: 16
出版历程
  • 收稿日期:  2015-01-15
  • 修回日期:  2015-01-15
  • 发布日期:  2015-07-30

目录

    /

    返回文章
    返回