Preparation of carboxylated cellulose nanocrystals via one-pot tandem reactions
-
摘要: 为了探究高效、简便的羧基化纳米纤维素晶体(CCN)制备工艺,以微晶纤维素(MCC)为原料,过硫酸铵为氧化剂,采用一锅法制备出羧基化纳米纤维素晶体。并运用响应面分析法对影响羧基化纳米纤维素得率的各因素及其相互之间的交互作用进行优化。再采用透射电镜、马尔文激光粒度仪、红外光谱、X射线衍射和热分析对样品的微观形貌、粒度分布、晶体特性、结构和热稳定性能进行了研究。结果表明:过硫酸铵浓度与时间、温度与时间之间的交互作用比过硫酸铵浓度与温度间的交互作用对羧基化纳米纤维素得率的影响显著。通过优化得到的制备工艺条件为时间204min、过硫酸铵浓度2mol/L、温度62℃,优化条件下制备的羧基化纳米纤维素得率为46.41%,与模型预测值(46.93%)吻合较好,表明建立的数学模型是有效的。CCN为直径10~30nm、长度50~200nm均匀分布的棒状,Z均粒径为96.92nm;在1731cm-1出现了羧基基团的CO特征峰,表明过硫酸铵分解产生的氧化剂H2O2选择性地把纤维素C6原子上的羟基氧化成了羧基;CCN属纤维素Ⅰ型,结晶度为78.35%;羧基化后的CCN热稳定性相对于MCC有较明显的降低。Abstract: In order to explore an effective and simple technology for the preparation of carboxylated cellulose nanocrystals (CCN), we prepared CCN with microcrystalline cellulose (MCC) as raw material and ammonium persulfate (APS) as oxidant via one-pot tandem reactions. The effects of time, ammonium persulfate mole, temperature and their interactions on the yield of carboxylated cellulose nanocrystals were optimized with response surface methodology. Morphology and the particle size distribution, crystallinity, structure and thermal properties of raw material and CCN were analyzed by transmission electron microscopy (TEM), laser particle analyzer, X-ray diffraction (XRD), fourier transformation infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). The results showed that the interaction between time and temperature,time and ammonium persulfate mole was better than that of ammonium persulfate mole and temperature on the yield of CCN. With the optimization, when time, ammonium persulfate mole and temperature were 204min, 2mol/L and 62℃, the yield of CCN would reach 46.41% and accorded well with the theoretical prediction value of 46.93 %, indicating that the designed model was reliable. CCN presented a uniform distribution of rod-like shape with the diameter of 10 to 30nm and the length of 50 to 200nm, and the Z-average size of CCN was 96.92nm. The peak of C=O appeared at 1731cm-1, indicating that H2O2 produced by the decomposition of ammonium persulfate selectively oxidized the hydroxymethyl groups of C6 into carboxyl. CCN was characteristic of the cellulose I crystal form, with the crystallinity of 78.35%. CCN had a lower thermal stability than MCC.
-
-
[1] LU Q L,HUANG B,TANG L R,et al. Optimum process conditions of pennisetum sinese roxb cellulose nanocrystalline characterization by the response surface method[J]. Journal of Functional Materials, 2013,44(20): 2985-2989.
[1] 卢麒麟,黄彪,唐丽荣,等.响应面法优化制备巨菌草纳米纤维素及其性能表征[J].功能材料,2013,44(20): 2985-2989. [2] 曲萍, 周益同, 张小丽, 等. 纳米纤维素/聚乳酸复合材料的性能研究[J]. 现代化工, 2011(增刊1): 221-224. [2] QU P,ZHOU Y L,ZHANG X L, et al. Study on properties of cellulose nanowhiskers/poly(1 actic acid)composites[J]. Modern Chemical Industry, 2011(Suppl.1): 221-224.
[3] TANG L R,HUANG B,DAI D S,et al. Spectrum and rheological properties of nanocellulose crystal prepared with cation exchange resin[J]. Polymer Materials Science and Engineering, 2011,27(6):45-48.
[3] PENTTILÄ A, SIEVÄNEN J, TORVINEN K, et al. Filler-nanocellulose substrate for printed electronics: experiments and model approach to structure and conductivity[J]. Cellulose, 2013, 20(3): 1413-1424.
[4] ZHUO Z F,FANG G G,SHEN K Z,et al. Studies on the properties of nanocrystalline cellulose[J]. China Pulp & Paper Industry, 2014(6): 14-16.
[4] ZHOU C, WU Q, YUE Y, et al. Application of rod-shaped cellulose nanocrystals in polyacrylamide hydrogels[J]. Journal of Colloid and Interface Science, 2011, 353(1): 116-123.
[5] ZHANGL P,TANG H W,QU P,et al. Spectral property of one-dimensional rodlike nano cellulose[J].Spectroscopy and Spectral Analysis,2011,31(4):1097-1100.
[5] FUJISAWA S,OKITA Y,SAITO T,et al.Formation of Nacylureas on the surface of TEMPO-oxidized cellulose nanofibril with carbodiimide in DMF[J].Cellulose,2011,18(5):1191-1199.
[6] FOLLAIN N,MARAIS M F,MONTANARI S,et al.Coupling onto surface carboxylated cellulose nanocrystals[J].Polymer,2010,51(23): 5332-5344.
[7] BARAZZOUK S,DANEAULT C.Spectroscopic characterization of oxidized nanocellulose grafted with fluorescent amino acids[J]. Cellulose,2011,18(3):643-653.
[8] FOLLAIN N,MONTANARI S,JEACOMINE I,et al.Coupling of amines with polyglucuronic acid: evidence for amide bond formation[J].Carbohydrate Polymers,2008,74(3):333-343.
[9] 唐丽荣,黄彪,戴达松,等.阳离子交换树脂催化制备纳米纤维素晶体的谱学性能与流变行为[J].高分子材料科学与工程,2011,27(6):45-48. [10] BOUJEMAOUI A, MONGKHONTREERAT S, MALMSTRÖM E, et al. Preparation and characterization of functionalized cellulose nanocrystals[J]. Carbohydrate Polymers, 2015, 115: 457-464.
[11] 卓治非, 房桂干, 沈葵忠, 等. 纳米纤维素晶体的性能研究[J]. 中华纸业, 2014(6): 14-16. [12] 张力平,唐焕威,曲萍,等.一维棒状纳米纤维素及光谱性质[J].光谱学与光谱分析,2011,31(4):1097-1100. [13] LU Q, TANG L, LIN F, et al. Preparation and characterization of cellulose nanocrystals via ultrasonication-assisted FeCl 3 -catalyzed hydrolysis[J]. Cellulose, 2014, 21(5): 3497-3506.
[14] SUN X F,XU F,SUN R C,et al.Characteristics of degraded cellulose obtained from steam-exploded wheat straw[J]. Carbohydrate Research,2005,340(1):97-106.
[15] TANG L, HUANG B, YANG N, et al. Organic solvent-free and efficient manufacture of functionalized cellulose nanocrystals via one-pot tandem reactions[J]. Green Chemistry, 2013, 15(9): 2369-2373.
[16] SHELTAMI R M, ABDULLAH I, AHMAD I, et al. Extraction of cellulose nanocrystals from mengkuang leaves ( Pandanus tectorius )[J]. Carbohydrate Polymers, 2012, 88(2): 772-779.
[17] ZHANG L, QU P, LI S, et al. Spectral property of one-dimensional rodlike nano cellulose[J]. Spectroscopy and Spectral Analysis, 2011, 31(4): 1097-1100.
[18] ALEMDAR A,SAIN M.Isolation and characterization of nanofibers from agricultural residues:wheat straw and soy hulls[J].Bioresource Technology,2008,99(6):1664-1671.
[19] HEISKANEN I,BACKFOLK K,VEHVILÄINEN M,et al.Process for producing microfibrillated cellulose:US, 13/382,706[P].2010-07-02.
[20] LIU D, ZHONG T, CHANG P R, et al. Starch composites reinforced by bamboo cellulosic crystals[J]. Bioresource Technology, 2010, 101(7): 2529-2536.
-
期刊类型引用(4)
1. 张苗苗,罗于洋,王树森,张丽娜,马成功,于胜利,王景圆. 内蒙古旺业甸华北落叶松人工林空间结构分析及其优化. 西北林学院学报. 2024(01): 81-87+107 . 百度学术
2. 荆媛,魏爽,史文辉,马梓贺,王德宇,戎可. 天然次生林中小斑啄木鸟的取食偏好. 野生动物学报. 2024(01): 84-94 . 百度学术
3. 孙宇,刘盛,田佳歆,程福山,赵士博,王诗俊. 基于空间结构优化的长白落叶松人工林分间伐模型构建. 中南林业科技大学学报. 2023(01): 72-83 . 百度学术
4. 刘鑫,黄浪,卿东升,李建军. 基于Voronoi空间单元的林分空间结构智能优化研究. 林业资源管理. 2023(04): 27-35 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 2191
- HTML全文浏览量: 290
- PDF下载量: 35
- 被引次数: 6