高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

镉胁迫下NO对胡杨细胞Cd2+吸收调控机制的研究

王少杰 赵楠 申泽丹 撒刚 孙会敏 赵瑞 沈昕 陈少良

王少杰, 赵楠, 申泽丹, 撒刚, 孙会敏, 赵瑞, 沈昕, 陈少良. 镉胁迫下NO对胡杨细胞Cd2+吸收调控机制的研究[J]. 北京林业大学学报, 2015, 37(6): 11-16. doi: 10.13332/j.1000-1522.20150023
引用本文: 王少杰, 赵楠, 申泽丹, 撒刚, 孙会敏, 赵瑞, 沈昕, 陈少良. 镉胁迫下NO对胡杨细胞Cd2+吸收调控机制的研究[J]. 北京林业大学学报, 2015, 37(6): 11-16. doi: 10.13332/j.1000-1522.20150023
WANG Shao-jie, ZHAO Nan, SHEN Ze-dan, SA Gang, SUN Hui-min, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Mediation of NO on Cd2+ uptake in Populus euphratica cells under cadmium stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 11-16. doi: 10.13332/j.1000-1522.20150023
Citation: WANG Shao-jie, ZHAO Nan, SHEN Ze-dan, SA Gang, SUN Hui-min, ZHAO Rui, SHEN Xin, CHEN Shao-liang. Mediation of NO on Cd2+ uptake in Populus euphratica cells under cadmium stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 11-16. doi: 10.13332/j.1000-1522.20150023

镉胁迫下NO对胡杨细胞Cd2+吸收调控机制的研究

doi: 10.13332/j.1000-1522.20150023
基金项目: 

国家自然科学基金项目(31270654、31200470)、教育部科学技术研究(科学技术类)项目(113013A)、人事部留学人员科技活动项目择优资助经费、高等学校学科创新引智计划项目(111 Project,B13007)、教育部创新团队发展计划项目(IRT13047)。

详细信息
    作者简介:

    王少杰。主要研究方向: 胡杨耐镉机理。Email: 19180625@163.com 地址:100083 北京市清华东路35号北京林业大学生物科学与技术学院。责任作者: 陈少良,教授,博士生导师。主要研究方向:树木抗性生理。Email: lschen@bjfu.edu.cn 地址:同上。

    王少杰。主要研究方向: 胡杨耐镉机理。Email: 19180625@163.com 地址:100083 北京市清华东路35号北京林业大学生物科学与技术学院。责任作者: 陈少良,教授,博士生导师。主要研究方向:树木抗性生理。Email: lschen@bjfu.edu.cn 地址:同上。

Mediation of NO on Cd2+ uptake in Populus euphratica cells under cadmium stress

  • 摘要: 本文研究了NO对胡杨愈伤细胞Cd2+耐受性的影响。结果表明:Cd2+(50 μmol/L)显著抑制了胡杨细胞的生长,而硝普钠SNP(NO供体,25 μmol/L)能明显缓解Cd2+对胡杨细胞生长的抑制作用,并减轻镉对细胞膜的伤害以及镉胁迫导致的细胞活力下降。利用非损伤微测技术等研究了NO对Cd2+动态吸收的影响。CdCl2(50 μmol/L)处理之后,胡杨细胞表现出Cd2+内流,而SNP(25 μmol/L,6 h)显著抑制了Cd2+的内流,并降低了Cd2+在细胞内的积累。研究发现,NO是通过调控钙离子通道来抑制胡杨细胞对Cd2+的吸收。镉胁迫下Cd2+内流被钙离子通道专一性抑制剂氯化镧明显抑制,表明Cd2+是通过钙离子通道转运进入细胞。并且发现,NO是通过促进Ca2+的内流来竞争性地抑制胡杨细胞对Cd2+的吸收,从而缓解了镉胁迫对胡杨细胞造成的生长抑制。

     

  • [1] CLEMENS S, AARTS M, THOMINE S, et al. Plant science: the key to preventing slow cadmium poisoning[J].Trends in Plant Science,2013, 18(2): 92-99.
    [2] KAPLAN O, INCE M, YAMAN M, et al. Sequential extraction of cadmium in different soil phases and plant parts from a former industrialized area[J].Environmental Chemistry Letters, 2011, 28(9): 397-404.
    [3] NAWROT T, PLUSQUIN M, HOGERVORST J, et al. Environmental exposure to cadmium and risk of cancer: a prospective population based study[J]. Lancet Oncology, 2006, 7: 119-126.
    [4] ASHRSF M, IRIS F, MANFRED G, et al. Salicylic acid alleviates the cadmium toxicity in barley seedlings[J].Plant Physiology, 2003, 132: 272-281.
    [5] XU J, YIN H, LIU X, et al.Salt affects plant Cd-stress responses by modulating growth and Cd accumulation[J].Planta, 2010, 231: 449-459.
    [6] BETHKA P C, LIBOUREL I G L, AOYAMA N, et al.The Arabidopsis aleurone layer responds to nitricoxide, gibberellin, and abscisic acid and is sufficient and necessary for seed dormancy[J]. Plant Physiology, 2007, 143(3): 1173-1188.
    [7] CLARKE A, DESIKAN R, HURST R D, et al. NO way back: nitricoxide and programmed cell death in Arabidopsis thaliana suspension cultures[J]. The Plant Journal, 2000, 24(5): 667-677.
    [8] GUO F Q, CRAWFORD N M.Arabidopsis nitric oxide synthase is targeted to mitochondria and protects against oxidative damage and dark-induced senescence[J].Plant Cell Online, 2005, 17(12): 3436-3450.
    [9] XU J, WANG W Y, YIN H G, et al. Exogenous nitric oxide improves antioxidative capacity and reduces auxin degradation in roots of Medicago truncatula seedlings under cadmium stress[J]. Plant and Soil, 2010, 326: 321-330.
    [10] WANG Q H, LIANG X, DONG Y J, et al.Effects of exogenous nitric oxide oncadmium toxicity, element contents and antioxidative system in Perennial ryegrass[J]. Plant Growth Regulation, 2013, 69: 11-20.
    [11] ARASIMOWICE J M, FLORYSZAKW J, DECKERT J, et al. Nitricoxide implication in cadmium-induced programmed cell death in roots and signaling response of yellow lupine plants[J]. Plant Physiology and Biochemistry, 2012, 58: 124-134.
    [12] SINGHH P, BATISH D R, KAUR G, et al.Nitric oxide(as sodium nitroprusside)supplementation ameliorates Cd toxicity in hydroponically grown wheat roots[J].Environmental and Experimental Botany, 2008, 63: 158-167.
    [13] LIU S, YANG R, PAN Y, et al. Effects of exogenous nitric oxide on lipid peroxidation and ATPase activity in plasma membrane and photosynthetic characteristics of Catharanthus roseus under cadmium stress[J]. Journal of Agro-Environment Science, 2013, 32 (12): 2360-2368.
    [14] PIQUERAS A, OLMOS E, MARTNEZ S J R, et al. Cd induced oxidative burst in tobacco BY-2 cells: time course, subcellular location and antioxidant response[J]. Free Radical Research, 1999, 31: 33-38.
    [15] OLMOS E, JUAN R, MARTNEZ S, et al. Early steps in the oxidative burst induced by cadmium incultured tobacco cells (BY-2 line)[J]. Journal of Experimental Botany, 2003, 54 (381): 291-301.
    [16] SUN J, CHEN S, DAI S X, et al.NaCl-induced alternations of cellular and tissueion fluxes in roots of salt-resistant and salt-sensitive poplar species[J]. Plant Physiology, 2009, 149: 1141-1153.
    [17] SUN J, WANG M J, DING M Q, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells[J].Plant Cell Environment,2010, 33: 943-958.
    [18] SUN J, LI L, LIU M, et al. Hydrogen peroxide and nitric oxide mediate K+/Na+ homeostasis and antioxidant defense in NaCl-stressed callus cells of two contrasting poplars[J]. Plant Cell, Tissue and Organ Culture, 2010, 103: 205-215.
    [19] CHEN S L, POLLE A. Salt tolerance in Populus[J]. Plant Biology, 2010, 12: 317-333.
    [20] POLLE A, KLEIN T, KETTNER C. Impact of cadmium on young plants of Populus euphratica and P.canescens, two poplar species that differ in stress tolerance[J]. New Forests, 2013, 44: 13-22.
    [21] GU E S, JIANG X N, GUO Z C. Organogenesis and plantlet regeneration in vitro of Populus euphratica[J]. Acta Botanica Sinica, 1999, 41 (1): 29-33.
    [22] GARCIA M C, LAMATTINA L. Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress[J].Plant Physiology, 2001, 126: 1196-1204.
    [23] SUN J, WANG R G, LIU Z, et al. Non-invasive microelectrode cadmium flux measurements reveal the spatial characteristics and real-time kinetics of cadmium transport in hyperaccumulatorand non-hyperaccumulator ecotypes of Sedum alfredii[J].Plant Physiology, 2013, 170: 355-359.
    [24] SHABALA S, NEWMAN I A. Salinity effects on the activity of plasma membrane H+ and Ca2+ transporters in bean leaf mesophyll: masking role of the cell wall[J]. Annual Botany, 2000, 85: 681-686.
    [25] SHABALA S. Ionic and osmotic components of salt stress specifically modulate net ion fluxes from bean leaf mesophyll[J].Plant Cell Environment, 2000, 23: 825-837.
    [26] LAETITIA P B, NATHALIE L, ALAIN V, et al. Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status[J]. The Plant Journal, 2002, 32:539-548.
    [27] BESSONB A, PUGIN A, WENDEHENNE D. New insights into nitric oxide signaling in plants[J]. Annual Review of Plant Biology, 2008, 59: 21-39.
    [28] BESSON B A, GRAVOT A. Nitric oxide contributes to cadmium toxicity in Arabidopsis by promoting cadmium accumulation in roots and by up-regulating genes related to iron uptake[J].Plant Physiology, 2009, 149: 1302-1315.
    [29] BESSON B A, COURTOIS C, GAUTHIER A, et al. Nitric oxide in plants: production and cross-talk with Ca2+ signaling[J]. Molecular Plant, 2008, 1: 218-228.
  • 加载中
计量
  • 文章访问数:  390
  • HTML全文浏览量:  15
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-01-21

目录

    /

    返回文章
    返回