高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

黄土高原小流域出口断面水力几何模型

周淑梅 雷廷武 雷启祥 张满良

周淑梅, 雷廷武, 雷启祥, 张满良. 黄土高原小流域出口断面水力几何模型[J]. 北京林业大学学报, 2015, 37(9): 45-52. doi: 10.13332/j.1000-1522.20150043
引用本文: 周淑梅, 雷廷武, 雷启祥, 张满良. 黄土高原小流域出口断面水力几何模型[J]. 北京林业大学学报, 2015, 37(9): 45-52. doi: 10.13332/j.1000-1522.20150043
ZHOU Shu-mei, LEI Ting-wu, LEI Qi-xiang, ZHANG Man-liang. Hydraulic geometry model at small watershed outlets on the Loess Plateau of China.[J]. Journal of Beijing Forestry University, 2015, 37(9): 45-52. doi: 10.13332/j.1000-1522.20150043
Citation: ZHOU Shu-mei, LEI Ting-wu, LEI Qi-xiang, ZHANG Man-liang. Hydraulic geometry model at small watershed outlets on the Loess Plateau of China.[J]. Journal of Beijing Forestry University, 2015, 37(9): 45-52. doi: 10.13332/j.1000-1522.20150043

黄土高原小流域出口断面水力几何模型

doi: 10.13332/j.1000-1522.20150043
基金项目: 

国家自然科学基金项目(41401307)、河北科技大学博士科研启动基金项目(QD201416)。

详细信息
    作者简介:

    周淑梅,博士。主要研究方向:流域水文和生态经济。Email:shumei1984@163.com 地址:050018河北省石家庄市裕翔街26号河北科技大学经济管理学院。

    责任作者:

    雷廷武,教授,博士生导师。主要研究方向:土壤侵蚀和旱地农业。Email:leitingwu@cau.edu.cn 地址:100083北京市清华东路17号 中国农业大学水利与土木工程学院。

Hydraulic geometry model at small watershed outlets on the Loess Plateau of China.

  • 摘要: 流域出口断面水力几何关系能够为流域水文模型参数获取、洪水过程演变及灾害预警提供辅助工具。以黄土高原丘陵沟壑区桥子西沟和桥子东沟2水土流失对比流域为研究对象,首先采用幂函数、自然对数函数和二阶对数函数模型分别拟合桥子西沟流域1987—2006年出口断面水文观测数据,应用模型决定系数(R2)和模拟残差平方和(RSS)评价3种模型拟合结果,优选平均流速-流量、水面宽-流量与平均水深-流量的水力几何模型。然后将桥子西沟流域观测数据随机分为2部分:1987—2002年共594组数据用于率定优选模型,2003—2006年共362组数据用于验证。采用均方根误差(RMSE)、模型效率系数(E)以及图形拟合等手段评价各优选模型的有效性。桥子西沟流域模型率定及验证结果表明:平均流速-流量和平均水深-流量关系适用于自然对数函数表达(RMSE值为19.89%和30.70%,E值为0.59和0.84),而水面宽-流量关系则适用于二阶对数函数表达(RMSE=3.84%,E=0.87)。进一步应用桥子东沟流域1987—2006年出口断面共1 006组观测数据验证各优选水力几何模型在相似流域的适用性,结果表明:平均水深-流量关系拟合效果优于桥子西沟流域,而平均流速-流量和水面宽-流量关系拟合优度稍逊于桥子西沟流域。该研究为黄土高原地区小流域洪水监测与预报提供基础。

     

  • [1] WESTERN A W,FINLAYSON B L,MCMAHON T A,et al. A method for characterising longitudinal irregularity in river channels [J]. Geomorphology, 1997, 21(1): 39-51.
    [1] RAN L S, WANG S J, FAN X L, et al. Analysis of characteristics of interannual variability of hydraulic geometry for the main channels in the upper reaches of the Yellow River [C]∥The conference proceedings of cross-strait symposium on environmental and resources. Beijing: Chinese Society of Soil and Water Conservation, 2007: 93-102.
    [2] RAN L S, WANG S J. Study on channel evolution and hydraulic geometry in the Inner Mongolia Reach of the Yellow River [J]. Journal of Sediment Research, 2010(4): 61-67.
    [2] RICHARDS K. Rivers: form and process in alluvial channels [M]. London: Methuen Co Ltd, 1982:358.
    [3] WANG S J, WEI Q W, TAN L H, et al. River regime and its variety of the mountainous rivers: Nujiang, Lancangjiang and Jinshajiang Rivers for their reaches in Yunnan Province of China[J]. Journal of Mountain Science, 2009, 27(1): 5-13.
    [3] STEWARDSON M. Hydraulic geometry of stream reaches [J]. Journal of Hydrology, 2005, 306(1-4): 97-111.
    [4] FU C L, DONG X Y, HAN X Y, et al. Analysis of the change characteristics of river transversal section in downstream of the Yellow River [J]. Journal of Water Resources Water Engineering, 2012, 23(3): 179-181.
    [4] LEOPOLD L B,MADDOCK T J. The hydraulic geometry of stream channels and some physiographic implications [C]∥U S geological survey professional paper. Washington: US Government Printing Office, 1953: 1-57.
    [5] PARK C C. World-wide variations in hydraulic geometry exponents of stream channels: an analysis and some observations [J]. Journal of Hydrology, 1977, 33(1-2): 133-146.
    [5] MA Y X, XU J X. The hydraulic geometry of Wuding River and its tributaries [J]. Geographical Research, 2009, 28(2): 345-353.
    [6] YUAN C P, LI S Q, LEI Q X, et al. Study on water erosion from two small watersheds with and without management on the Loess Plateau [J]. Journal of China Agricultural University, 2010, 15(6): 95-101.
    [6] RIDENOUR G S,GIARDINO J R. The statistical study of hydraulic geometry: a new direction for compositional data analysis [J]. Mathematical Geology, 1991, 23(3): 349-366.
    [7] MERIGLIANO M F. Hydraulic geometry and stream channel behavior:an uncertain link [J]. Journal of the American Water Resources Association, 1997, 33(6): 1327-1336.
    [7] ZHENG W, GUO Q C, LU Q. Review of basic theories of hyperconcentrated flows [J]. Journal of Sediment Research, 2011( 2): 75-80.
    [8] RICHARDS K S. Hydraulic geometry and channel roughness: a non-linear system [J]. American Journal of Science, 1973, 273(10): 877-896.
    [9] KNIGHTON A D. Comments on log-quadratic relations in hydraulic geometry [J]. Earth Surface Processes, 1979, 4(3): 205-209.
    [10] 冉立山,王随继,范小黎,等. 黄河上游主河道水力几何形态的年际变化特征分析 [C]∥海峡两岸环境与资源学术研讨会学术论文集.北京: 中国水土保持学会,2007: 93-102.
    [11] 冉立山,王随继. 黄河内蒙古河段河道演变及水力几何形态研究[J]. 泥沙研究, 2010(4): 61-67.
    [12] 王随继,魏全伟,谭利华,等. 山地河流的河相关系及其变化趋势:以怒江、澜沧江和金沙江云南河段为例 [J]. 山地学报, 2009, 27(1): 5-13.
    [13] 付春兰,董学阳,韩晓羽,等. 黄河下游河道横断面变化特点分析[J]. 水资源与水工程学报, 2012, 23(3): 179-181.
    [14] 马元旭,许炯心. 无定河及其各支流的断面水力几何形态[J]. 地理研究, 2009, 28(2): 345-353.
    [15] ZHOU S M,LEI T W,WARRINGTON D N,et al. Does watershed size affect simple mathematical relationships between flow velocity and discharge rate at watershed outlets on the Loess Plateau of China [J]. Journal of Hydrology, 2012, 444-445: 1-9.
    [16] 原翠萍,李淑芹,雷启祥,等. 黄土丘陵沟壑区治理与非治理对比小流域侵蚀产流比较研究 [J]. 中国农业大学学报, 2010, 15(6): 95-101.
    [17] WILLMOTT C J,ACKLESON S G,DAVIS R E,et al. Statistics for the evaluation and comparison of models [J]. Journal of Geophysical Research, 1985, 90(C5): 8995-9005.
    [18] NASH J E,SUTCLIFFE J V. River flow forecasting through conceptual models (I): a discussion of principles [J]. Journal of Hydrology, 1970, 10(3): 282-290.
    [19] RHODES D D. The b-f-m diagram; graphical representation and interpretation of at-a-station hydraulic geometry [J]. American Journal of Science, 1977, 277(1): 73-96.
    [20] 郑委,郭庆超,陆琴. 高含沙水流基本理论综述 [J]. 泥沙研究, 2011( 2): 75-80.
    [21] HUANG H Q,NANSON G C. Vegetation and channel variation: a case study of four small streams in southeastern Australia [J]. Geomorphology, 1997, 18(3-4): 237-249.
    [22] EATON B C,GILES T R. Assessing the effect of vegetation-related bank strength on channel morphology and stability in gravel-bed streams using numerical models [J]. Earth Surface Processes and Landforms, 2009, 34(5): 712-724.
    [23] KLEIN M. Drainage area and the variation of channel geometry downstream [J]. Earth Surface Processes and Landforms, 1981, 6(6): 589-593.
    [24] THORNES J B. The hydraulic geometry of stream channels in the Xingu-Araguaia Headwaters [J]. The Geographical Journal, 1970, 136(3): 376-382.
    [25] BATES B C. A statistical log piecewise linear model of at-a-station hydraulic geometry [J]. Water Resources Research, 1990, 26(1): 109-118.
    [26] NAVRATIL O,ALBERT M B. Non-linearity of reach hydraulic geometry relations [J]. Journal of Hydrology, 2010, 388(3-4): 280-290.
  • 加载中
计量
  • 文章访问数:  6471
  • HTML全文浏览量:  90
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-02-06
  • 刊出日期:  2015-09-30

目录

    /

    返回文章
    返回