• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

SiO2溶胶在欧洲赤松和火炬松边材中的渗透性

孙敏洋, 曹金珍

孙敏洋, 曹金珍. SiO2溶胶在欧洲赤松和火炬松边材中的渗透性[J]. 北京林业大学学报, 2015, 37(9): 85-90. DOI: 10.13332/j.1000-1522.20150054
引用本文: 孙敏洋, 曹金珍. SiO2溶胶在欧洲赤松和火炬松边材中的渗透性[J]. 北京林业大学学报, 2015, 37(9): 85-90. DOI: 10.13332/j.1000-1522.20150054
SUN Min-yang, CAO Jin-zhen.. Penetration of SiO2 sols in sapwood of Scots pine and loblolly pine.[J]. Journal of Beijing Forestry University, 2015, 37(9): 85-90. DOI: 10.13332/j.1000-1522.20150054
Citation: SUN Min-yang, CAO Jin-zhen.. Penetration of SiO2 sols in sapwood of Scots pine and loblolly pine.[J]. Journal of Beijing Forestry University, 2015, 37(9): 85-90. DOI: 10.13332/j.1000-1522.20150054

SiO2溶胶在欧洲赤松和火炬松边材中的渗透性

基金项目: 

中央高校基本科研业务费专项(TD2011-14)。

详细信息
    作者简介:

    孙敏洋。主要研究方向:木材功能性改良。Email:jssmy123@126.com 地址:100083 北京市清华东路35号北京林业大学材料科学与技术学院。

    责任作者:

    曹金珍,教授,博士生导师。主要研究方向:木材功能性改良、木材学。Email:caoj@bifu.edu.cn 地址:同上。

Penetration of SiO2 sols in sapwood of Scots pine and loblolly pine.

  • 摘要: 为了考察微纳米液体改性剂在木材中的渗透规律,采用2种粒径(30和150 nm)和3种浓度(质量分数5%,15%、30%)的SiO2溶胶真空30 min-常压浸渍24 h欧洲赤松和火炬松边材,比较其24 h内吸液率的经时变化规律和24 h增重率,通过质量法分析30 nm、15%的硅溶胶处理材轴向SiO2的浓度梯度,并采用扫描电镜-X射线能谱仪分析各轴向深度木材细胞壁中硅元素的分布。结果表明:1)粒径小的硅溶胶在浸渍初期更易于在木材中渗透,随着浸渍时间的延长,粒径的影响变小,甚至可能出现相反的趋势;浓度对吸液率影响显著,一般浓度越高,吸液率越小。浓度高的改性剂处理木材时,粒径的影响更为显著。2)树种对硅溶胶的渗透性影响显著。硅溶胶在欧洲赤松边材的吸液率通常高于火炬松边材,但由于硅溶胶颗粒和水分在欧洲赤松中渗透不同步,硅溶胶在端头部分的大量沉积,导致欧洲赤松中SiO2在轴向分布浓度梯度远高于火炬松。3)硅元素进入各个轴向深度的木材细胞壁,硅元素的浓度分布规律与质量法结果一致。
    Abstract: In order to investigate the penetration of micro or nano emulsion modifiers in wood, SiO2sols with two different particle sizes (30 and 150 nm) and three concentrations (5%, 15% and 30%) were used to impregnate sapwood of Scots pine (Pinus sylvestris) and loblolly pine (Pinus taeda) under vacuum for 30 min followed by atmospheric pressure for 24 h. Then the time-dependent liquid absorption curves during 24 h and the weight percent gain at 24 h were tested. In addition, the longitudinal SiO2 concentration gradients of wood samples treated by 30 nm, 15% silicasols were obtained by mass method, and their longitudinal silicon distribution in wood cell wall was analyzed by using scanning electronic microscope coupled with energy dispersed X-ray analyzer (SEM-EDXA). The research results indicated that: 1) smaller particle sized silica sols are easier to penetrate in wood during the initial impregnation. With the impregnation proceeding, the influence of particle size weakened, and a reverse trend could even be observed. The concentration of silica sols also showed an obvious impact on liquid adsorption. Lower concentration usually resulted in higher liquid adsorption. The effect of particle size on liquid absorption was more obvious for wood treated with modifiers at high concentrations. 2) Wood species greatly affected the penetration of SiO2 sols. The liquid adsorption of sols in Scots pine sapwood was generally higher than that in loblolly pine. However, numerous SiO2 particles deposited at the opening end of Scots pine samples, resulting in non-simultaneous penetration of silica sol particles and water in Scots pines. As a result, the longitudinal SiO2 concentration gradient in Scots pines was much greater than that in loblolly pines. 3) SEM-EDXA analysis showed that the silicon could enter the wood cell walls in each axial depth profile. The scanned silicon concentration distribution was consistent with the results obtained by mass methods. These results are of great importance on improving the penetration of micro or nano emulsion modifiers in wood.
  • [1]

    LANDE S, HIB O, LARNY E. Variation in treatability of Scots pine (Pinus sylvestris) by the chemical modification agent furfuryl alcohol dissolved in water[J]. Wood Sci Technol, 2010, 44(1): 105-118.

    [1]

    ZHAO G J. Nano-dimensions in wood, nano-wood, wood and inorganic nano-composites [J].Journal of Beijing Forestry University, 2002, 24(5): 6-9.

    [2]

    ZIMMER K, TREU A, McCULLOH K A. Anatomical differences in the structural elements of fluid passage of Scots pine sapwood with contrasting treatability[J].Wood Sci Technol, 2014, 48(3): 435-447.

    [2]

    FU Y L, ZHAO G J. Microstructure of wood-silicon dioxide composite [J]. Journal of Beijing Forestry University, 2006, 28(5): 119-124.

    [3]

    JIANG Y F,CHU F X, QIN T F. Element distribution inside silicon modified wood [J].China Wood Industry, 2013, 27(1): 21-23.

    [3]

    COMSTOCK G L. Directional permeability of softwoods[J]. Wood and Fiber, 1970, 1(4): 283-289.

    [4]

    LY/T 1253—1999 Determination of mineral total elements (silica, iron, aluminium, titanium, manganese, calcium, magnesium, phosphorus) ignition loss in forest soil [S]. Beijing: China Forestry Publishing House, 1999.

    [4]

    PETTY J A. The relation of wood structure to preservative treatment[M]//The society of forestry Britain.Oxford :Oxford University Press,1970:29-35.

    [5] 赵广杰. 木材中的纳米尺度、纳米木材及木材-无机纳米复合材料[J]. 北京林业大学学报,2002,24(5): 6-9.
    [6]

    YAMAN B. Comparative wood anatomy of Pinus sylvestris and its var. compacta in the west black sea region of Turkey[J].IAWA Journal, 2007, 28(1): 75-81.

    [7]

    AHMED S A, CHUN S K. Permeability of Tectona grandis L. as affected by wood structure[J]. Wood Sci Technol,2011,45(2): 487-500.

    [8]

    TONDI G, THEVENON M F, MIES B, et al. Impregnation of Scots pine and beech with tannin solutions: effect of viscosity and wood anatomy in wood infiltration[J]. Wood Sci Technol, 2013, 47(6): 615-626.

    [9]

    SINGH A, SINGH T. Novel microscopic approaches to visualise chitosan within impregnated wood[C]//The 43rdannual meeting of the international research group on wood protection. Kuala Lumpur, Malaysia: IRG/WP, 2012:6-10.

    [10]

    CAROL A C, VINA W Y, RACHEL A A, et al. Feasibility of nanozinc oxide as a wood preservative[J]. American Wood Protection Association, 2009, 10(1): 255-262.

    [11]

    SHYAMAL C G, MILITZ H, MAI C. The efficacy of commercial silicones against blue stain and mould fungi in wood[J]. Eur J Wood Prod,2009,67: 159-167.

    [12]

    MAI C, MILITZ H. Modification of wood with silicon compounds inorganic silicon compounds and sol-gel systems: a review[J]. Wood Sci Technol,2004,37: 339-348.

    [13] 符韵林,赵广杰.木材/二氧化硅复合材料的微细构造[J]. 北京林业大学学报,2006,28(5):119-124.
    [14] 姜亦飞,储富祥,秦特夫.有机硅溶胶-凝胶法改性木材Si元素的分布状态[J].木材工业,2013,27(1):21-23.
    [15] LY/T 1253—1999森林土壤矿质全量元素(硅、铁、铝、钦、锰、钙、镁、磷)烧失量的测定[S]. 北京:中国林业出版社, 1999.
    [16]

    BAUCH J, BERNDT H. Variability of the chemical composition of pit membranes in bordered pits of gymnosperms[J].Wood Science and Technology,1973,7(2): 6-19.

    [17]

    UPHILL S J, COSGROVE T, WUGE H B. Flow of nanofluids through porous media: preserving timber with colloid science[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2014, 460: 38-50.

    [18]

    THOMAS R J. The ultrastructure of southern pine bordered pit membranes as revealed by specialized drying techniques[J]. Wood and Fiber, 1969, 1: 110-123.

  • 期刊类型引用(4)

    1. 平立娟,柴宇博,刘君良,孙柏玲. 硅溶胶与GU/GMU树脂复合改性橡胶木的性能. 林业科学. 2021(10): 111-119 . 百度学术
    2. 石媛,刘君良,吕文华,汪嘉君,倪林. 酸、碱硅溶胶改性木材的制备与性能研究. 木材工业. 2019(01): 21-24+33 . 百度学术
    3. 李利芬,吴志刚,余丽萍. 溶胶-凝胶法功能性改良木材研究进展. 世界林业研究. 2019(02): 45-50 . 百度学术
    4. 曹金珍. 木材保护剂分散体系及其液体渗透性研究概述. 林业工程学报. 2019(03): 1-9 . 百度学术

    其他类型引用(8)

计量
  • 文章访问数:  1828
  • HTML全文浏览量:  212
  • PDF下载量:  30
  • 被引次数: 12
出版历程
  • 收稿日期:  2015-03-03
  • 发布日期:  2015-09-29

目录

    /

    返回文章
    返回