高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

SiO2溶胶在欧洲赤松和火炬松边材中的渗透性

孙敏洋 曹金珍

孙敏洋, 曹金珍. SiO2溶胶在欧洲赤松和火炬松边材中的渗透性[J]. 北京林业大学学报, 2015, 37(9): 85-90. doi: 10.13332/j.1000-1522.20150054
引用本文: 孙敏洋, 曹金珍. SiO2溶胶在欧洲赤松和火炬松边材中的渗透性[J]. 北京林业大学学报, 2015, 37(9): 85-90. doi: 10.13332/j.1000-1522.20150054
SUN Min-yang, CAO Jin-zhen.. Penetration of SiO2 sols in sapwood of Scots pine and loblolly pine.[J]. Journal of Beijing Forestry University, 2015, 37(9): 85-90. doi: 10.13332/j.1000-1522.20150054
Citation: SUN Min-yang, CAO Jin-zhen.. Penetration of SiO2 sols in sapwood of Scots pine and loblolly pine.[J]. Journal of Beijing Forestry University, 2015, 37(9): 85-90. doi: 10.13332/j.1000-1522.20150054

SiO2溶胶在欧洲赤松和火炬松边材中的渗透性

doi: 10.13332/j.1000-1522.20150054
基金项目: 

中央高校基本科研业务费专项(TD2011-14)。

详细信息
    作者简介:

    孙敏洋。主要研究方向:木材功能性改良。Email:jssmy123@126.com 地址:100083 北京市清华东路35号北京林业大学材料科学与技术学院。

    责任作者:

    曹金珍,教授,博士生导师。主要研究方向:木材功能性改良、木材学。Email:caoj@bifu.edu.cn 地址:同上。

Penetration of SiO2 sols in sapwood of Scots pine and loblolly pine.

  • 摘要: 为了考察微纳米液体改性剂在木材中的渗透规律,采用2种粒径(30和150 nm)和3种浓度(质量分数5%,15%、30%)的SiO2溶胶真空30 min-常压浸渍24 h欧洲赤松和火炬松边材,比较其24 h内吸液率的经时变化规律和24 h增重率,通过质量法分析30 nm、15%的硅溶胶处理材轴向SiO2的浓度梯度,并采用扫描电镜-X射线能谱仪分析各轴向深度木材细胞壁中硅元素的分布。结果表明:1)粒径小的硅溶胶在浸渍初期更易于在木材中渗透,随着浸渍时间的延长,粒径的影响变小,甚至可能出现相反的趋势;浓度对吸液率影响显著,一般浓度越高,吸液率越小。浓度高的改性剂处理木材时,粒径的影响更为显著。2)树种对硅溶胶的渗透性影响显著。硅溶胶在欧洲赤松边材的吸液率通常高于火炬松边材,但由于硅溶胶颗粒和水分在欧洲赤松中渗透不同步,硅溶胶在端头部分的大量沉积,导致欧洲赤松中SiO2在轴向分布浓度梯度远高于火炬松。3)硅元素进入各个轴向深度的木材细胞壁,硅元素的浓度分布规律与质量法结果一致。

     

  • [1] LANDE S, HIB O, LARNY E. Variation in treatability of Scots pine (Pinus sylvestris) by the chemical modification agent furfuryl alcohol dissolved in water[J]. Wood Sci Technol, 2010, 44(1): 105-118.
    [1] ZHAO G J. Nano-dimensions in wood, nano-wood, wood and inorganic nano-composites [J].Journal of Beijing Forestry University, 2002, 24(5): 6-9.
    [2] ZIMMER K, TREU A, McCULLOH K A. Anatomical differences in the structural elements of fluid passage of Scots pine sapwood with contrasting treatability[J].Wood Sci Technol, 2014, 48(3): 435-447.
    [2] FU Y L, ZHAO G J. Microstructure of wood-silicon dioxide composite [J]. Journal of Beijing Forestry University, 2006, 28(5): 119-124.
    [3] JIANG Y F,CHU F X, QIN T F. Element distribution inside silicon modified wood [J].China Wood Industry, 2013, 27(1): 21-23.
    [3] COMSTOCK G L. Directional permeability of softwoods[J]. Wood and Fiber, 1970, 1(4): 283-289.
    [4] LY/T 1253—1999 Determination of mineral total elements (silica, iron, aluminium, titanium, manganese, calcium, magnesium, phosphorus) ignition loss in forest soil [S]. Beijing: China Forestry Publishing House, 1999.
    [4] PETTY J A. The relation of wood structure to preservative treatment[M]//The society of forestry Britain.Oxford :Oxford University Press,1970:29-35.
    [5] 赵广杰. 木材中的纳米尺度、纳米木材及木材-无机纳米复合材料[J]. 北京林业大学学报,2002,24(5): 6-9.
    [6] YAMAN B. Comparative wood anatomy of Pinus sylvestris and its var. compacta in the west black sea region of Turkey[J].IAWA Journal, 2007, 28(1): 75-81.
    [7] AHMED S A, CHUN S K. Permeability of Tectona grandis L. as affected by wood structure[J]. Wood Sci Technol,2011,45(2): 487-500.
    [8] TONDI G, THEVENON M F, MIES B, et al. Impregnation of Scots pine and beech with tannin solutions: effect of viscosity and wood anatomy in wood infiltration[J]. Wood Sci Technol, 2013, 47(6): 615-626.
    [9] SINGH A, SINGH T. Novel microscopic approaches to visualise chitosan within impregnated wood[C]//The 43rdannual meeting of the international research group on wood protection. Kuala Lumpur, Malaysia: IRG/WP, 2012:6-10.
    [10] CAROL A C, VINA W Y, RACHEL A A, et al. Feasibility of nanozinc oxide as a wood preservative[J]. American Wood Protection Association, 2009, 10(1): 255-262.
    [11] SHYAMAL C G, MILITZ H, MAI C. The efficacy of commercial silicones against blue stain and mould fungi in wood[J]. Eur J Wood Prod,2009,67: 159-167.
    [12] MAI C, MILITZ H. Modification of wood with silicon compounds inorganic silicon compounds and sol-gel systems: a review[J]. Wood Sci Technol,2004,37: 339-348.
    [13] 符韵林,赵广杰.木材/二氧化硅复合材料的微细构造[J]. 北京林业大学学报,2006,28(5):119-124.
    [14] 姜亦飞,储富祥,秦特夫.有机硅溶胶-凝胶法改性木材Si元素的分布状态[J].木材工业,2013,27(1):21-23.
    [15] LY/T 1253—1999森林土壤矿质全量元素(硅、铁、铝、钦、锰、钙、镁、磷)烧失量的测定[S]. 北京:中国林业出版社, 1999.
    [16] BAUCH J, BERNDT H. Variability of the chemical composition of pit membranes in bordered pits of gymnosperms[J].Wood Science and Technology,1973,7(2): 6-19.
    [17] UPHILL S J, COSGROVE T, WUGE H B. Flow of nanofluids through porous media: preserving timber with colloid science[J]. Colloids and Surfaces A: Physicochem Eng Aspects, 2014, 460: 38-50.
    [18] THOMAS R J. The ultrastructure of southern pine bordered pit membranes as revealed by specialized drying techniques[J]. Wood and Fiber, 1969, 1: 110-123.
  • 加载中
计量
  • 文章访问数:  1014
  • HTML全文浏览量:  82
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-04
  • 刊出日期:  2015-09-30

目录

    /

    返回文章
    返回