高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

丛枝菌根真菌对西南岩溶地区干旱及干湿交替下 金银花根系生长的影响

刘锦春 马晔 陶建平 高凯敏 梁千慧

刘锦春, 马晔, 陶建平, 高凯敏, 梁千慧. 丛枝菌根真菌对西南岩溶地区干旱及干湿交替下 金银花根系生长的影响[J]. 北京林业大学学报, 2015, 37(10): 110-116. doi: 10.13332/j.1000-1522.20150057
引用本文: 刘锦春, 马晔, 陶建平, 高凯敏, 梁千慧. 丛枝菌根真菌对西南岩溶地区干旱及干湿交替下 金银花根系生长的影响[J]. 北京林业大学学报, 2015, 37(10): 110-116. doi: 10.13332/j.1000-1522.20150057
LIU Jin-chun, MA Ye, TAO Jian-ping, GAO Kai-min, LIANG Qian-hui. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 110-116. doi: 10.13332/j.1000-1522.20150057
Citation: LIU Jin-chun, MA Ye, TAO Jian-ping, GAO Kai-min, LIANG Qian-hui. Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.[J]. Journal of Beijing Forestry University, 2015, 37(10): 110-116. doi: 10.13332/j.1000-1522.20150057

丛枝菌根真菌对西南岩溶地区干旱及干湿交替下 金银花根系生长的影响

doi: 10.13332/j.1000-1522.20150057
基金项目: 

重庆市自然科学基金项目(cstc2014jcyjA80016)。

详细信息
    作者简介:

    刘锦春,博士,副教授。主要研究方向:植物生态学。Email:jinchun@swu.edu.cn 地址:400715 重庆北碚天生路1号西南大学生命科学学院。

Effects of AM fungus on root growth of Lonicera japonica under alternate dry and wet conditions in karst regions of southwestern China.

  • 摘要: 近年来我国西南岩溶地区干旱频发、干湿交替现象严重,植被生存环境恶劣,植被恢复困难,石漠化程度呈加剧之势。丛枝菌根真菌能与植物根系形成互惠共生关系,对植物生长发育及抗逆性有积极影响。研究表明,丛枝菌根真菌能够提高植物的抗旱性。然而,丛枝菌根真菌是否能够提高宿主植物对干湿交替等多变环境的耐受性,目前并没有见到相关报道。以西南岩溶地区适生植物金银花为研究对象,利用盆栽控制实验,采用3因素(接种、水分处理、干旱时间处理)随机区组设计,研究了接种丛枝菌根--摩西管柄囊霉对不同干旱及干湿交替条件下金银花根系形态参数及根系生物量的影响。结果表明:短时间的干旱促进了未接种真菌的金银花根系长度、根系表面积和根系体积等形态参数,根系生物量增加,且复水对植物有一定补偿作用;但长期干旱后植株根长、根表面积和根体积等所有根系形态参数均降低,根系生物量显著下降,即长期干旱对金银花的根系生长产生了严重的抑制作用,且复水补偿作用因干旱的严重抑制作用而丧失。短时间干旱降低了接种植株的根长、根表面积和根体积等根系生长参数,根系生物量不变;复水后接种植株仍然具有补偿生长作用,其原因可能与菌根泡囊结构有关。随着干旱处理时间的延长,接种植物的根系也受到伤害,复水补偿能力丧失。可见,菌根真菌促进了喀斯特干旱和干湿交替条件下金银花的根系生长,且在干旱条件下促进作用更加显著,但与干旱时间和干旱强度并没有交互作用。

     

  • [1] ZHU S Q. Ecological research on karst forest (Ⅲ)[M]. Guiyang: Guizhou Technological Press, 2003.
    [1] 朱守谦. 喀斯特森林生态学研究(Ⅲ)[M].贵阳: 贵州科技出版社,2003.
    [2] 刘锦春, 钟章成. 水分胁迫和复水对石灰岩地区柏木(Cupressus funebris Endl.)幼苗根系生长的影响[J]. 生态学报, 2009, 29(12):6439-6445.
    [2] LIU J C, ZHONG Z C. Influence of water stress and re-watering on the root growth of Cupressus funebris Endl. seedlings in the limestone area[J]. Acta Ecologica Sinica, 2009, 29 (12) : 6439-6445.
    [3] SMITH S E, SMITH F A. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales[J]. Annual Review of Plant Biology,2011, 62: 227-250.
    [3] JI Y H,LIU R J, LI M. Arbuscular mycorrhizal colonization and development of Flaveria bidentis under natural invasive conditions[J]. Mycosystema, 2015, 34(1): 82-90.
    [4] PARNISKE M. Arbuscular mycorrhiza: the mother of plant root endosymbiosis[J]. Nature Reviews Microbiology, 2008, 6: 763-775.
    [4] GUO H J,HE X L. Effects of AM fungi on the growth and drought resistance of Astragalus adsurgens Pall. under water stress[J]. Acta Ecologica Sinica, 2010, 30 (21): 5933-5940.
    [5] BONFANTE P, GENRE A. Plants and arbuscular mycorrhizal fungi: an evolutionary-developmental perspective[J]. Trends in Plant Science, 2008, 13(9): 492-498.
    [5] BU L D, ZHANG R H, HAN M M, et al. The physiological mechanism of compensation effect in maize leaf by re-watering after drought stress[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2009, 18(2): 88-92.
    [6] 季彦华, 刘润进, 李敏. 自然入侵条件下黄顶菊丛枝菌根定殖及发育的研究[J]. 菌物学报, 2015, 34 (1): 82-90.
    [6] HE X L, GENG X J, ZHAO L L, et al. Seasonal variation of AM fungal diversity in the rhizosphere of Lonicera japonica[J]. Ecology and Environmental Sciences, 2013, 22(1): 90-94.
    [7] WEN M L, LE Z B, XU Q,et al. The methods of explant sterilization of Lonicera japonica[J]. Shaanxi Journal of Agricultural Sciences, 2011(2): 50-52.
    [7] PORCEL R, AROCA R, AZCN R, et al. PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance[J]. Plant Molecular Biology, 2006, 60(3): 389-404.
    [8] 郭辉娟, 贺学礼. 水分胁迫下AM真菌对沙打旺生长和抗旱性的影响[J]. 生态学报, 2010, 30 (21): 5933-5940.
    [8] LIU J C, ZHONG Z C, HE Y J. Effects of drought stress and re-watering on the active oxygen scavenging system of Cupressus funebris seedlings in karst area [J]. Chinese Journal of Applied Ecology, 2011, 22(11): 2836-2840.
    [9] WORCHEL E R, GIAUQUE H E, KIVLIN S N. Fungal symbionts alter plant drought response[J]. Microbial Ecology, 2013, 65(3): 671-678.
    [9] CAI L P, WU P F, HOU X L, et al. Morphological response to different drought stress in the roots of Neyraudia reynaudiana [J]. Chinese Agricultural Science Bulletin, 2012, 28(28): 44-48.
    [10] HODGE A, BERTA G, DOUSSAN C, et al. Plant root growth, architecture and function[J]. Plant and Soil, 2009,321: 153-187.
    [10] HE W M. Distribution characteristics of root area of Sabina vulgaris under different habitats[J]. Scientia Silvae Sinicae, 2000, 36 (5) : 17-21.
    [11] ALIZADEH O, NADIAN H A. Evaluation effect of water stress and nitrogen rates on amount of absorption some macro and micro elements in corn plant mycorrhizae and non-mycorrhizae[J]. Advances in Natural and Applied Sciences, 2010, 4(2): 153-158.
    [11] QI W, ZHANG J W, WANG K J,et al. Effects of drought stress on the grain yield and root physiological traits of maize varieties with different drought tolerance[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 48-52.
    [12] CAMPRUBI A, ABRIL M, ESTAUN V, et al. Contribution of arbuscular mycorrhizal symbiosis to the survival of psammophilic plants after sea water flooding[J]. Plant and Soil, 2012, 351(1-2): 97-105.
    [13] SCHENCK N C, SMITH G S. Additional new and unreported species of mycorrhizal fungi (Endogonaceae) from Florida[J]. Mycologia,1982,74(1): 77-92.
    [14] 卜玲铎, 张仁和, 韩苗苗, 等. 干旱复水激发玉米叶片补偿效应的生理机制[J]. 西北农业学报, 2009, 18(2): 88-92.
    [15] NORTH G B, MARTRE P, NOBEL P S. Aquaporins account for variations in hydraulic conductance for metabolically active root regions of Agave desert in wet, dry, and rewetted soil[J]. Plant, Cell and Environment, 2004, 27: 219-228.
    [16] NAKAI A, YURUGI Y, KISANUKI H. Stress responses in Salix gracilistyla cuttings subjected to repetitive alternate flooding and drought[J]. Trees, 2010, 24(6): 1087-1095.
    [17] 贺学礼, 耿晓进, 赵丽莉, 等. 金银花根围AM真菌多样性的季节变化[J]. 生态环境学报, 2013, 22(1):90-94.
    [18] NICOLSON T H, GERDEMANN J W. Mycorrhizal endogone species[J]. Mycologia, 1968, 60(2):313-325.
    [19] 文明玲, 乐正碧, 徐茜, 等. 金银花组织培养外植体灭菌方法探索[J]. 陕西农业科学, 2011(2): 50-52.
    [20] 刘锦春, 钟章成, 何跃军. 干旱胁迫及复水对喀斯特地区柏木幼苗活性氧清除系统的影响[J]. 应用生态学报, 2011, 22(11): 2836-2840.
    [21] PHILLIP J M, HAYMAN D S. Improved procodes for cleaning and staining parasitic and vesicular arbuscular mycorhizal fungi[J].Transactions of the British Mycological Society, 1970, 55:158-161.
    [22] 蔡丽平, 吴鹏飞, 侯晓龙, 等. 类芦根系对不同强度干旱胁迫的形态学响应[J]. 中国农学通报, 2012, 28(28): 44-48.
    [23] 何维明. 不同生境中沙地柏根面积分布特征[J]. 林业科学, 2000, 36 (5) : 17-21.
    [24] BERNTSON G M. Modelling root architecture: are there tradeoffs between efficiency and potential of resource aquisition?[J]. New Phytologist, 1993, 127: 483-493.
    [25] SHARDA J N, KOIDE R T. Can hypodermal passage cell distribution limit root penetration by mycorrhizal fungi?[J]. New Phytologist, 2008, 180(3): 696-701.
    [26] GARCA I, MENDOZA R, POMAR M C. Deficit and excess of soil water impact on plant growth of Lotus tenuis by affecting nutrient uptake and arbuscular mycorrhizal symbiosis[J]. Plant and Soil, 2008, 304(1-2): 117-131.
    [27] 齐伟, 张吉旺, 王空军, 等. 干旱胁迫对不同耐旱性玉米杂交种产量和根系生理特性的影响[J]. 应用生态学报, 2010, 21(1): 48-52.
    [28] BORKOWSKA B. Growth and photosynthetic activity of micropropagated strawberry plants inoculated with endomycorrhizal fungi (AMF) and growing under drought stress[J]. Acta Physiologiae Plantarum, 2002, 24(4): 365-370.
  • 加载中
计量
  • 文章访问数:  1033
  • HTML全文浏览量:  71
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-04
  • 刊出日期:  2015-10-31

目录

    /

    返回文章
    返回