高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

沙漠绿洲过渡带柽柳灌丛沙堆—丘间地系统土壤粒度分异规律

刘进辉 王雪芹 谭凤翥

刘进辉, 王雪芹, 马, 洋, 谭凤翥. 沙漠绿洲过渡带柽柳灌丛沙堆—丘间地系统土壤粒度分异规律[J]. 北京林业大学学报, 2015, 37(11): 89-99. doi: 10.13332/j.1000-1522.20150067
引用本文: 刘进辉, 王雪芹, 马, 洋, 谭凤翥. 沙漠绿洲过渡带柽柳灌丛沙堆—丘间地系统土壤粒度分异规律[J]. 北京林业大学学报, 2015, 37(11): 89-99. doi: 10.13332/j.1000-1522.20150067
LIU Jin-hui, WANG Xue-qin, MA Yang, TAN Feng-zhu, .. Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone.[J]. Journal of Beijing Forestry University, 2015, 37(11): 89-99. doi: 10.13332/j.1000-1522.20150067
Citation: LIU Jin-hui, WANG Xue-qin, MA Yang, TAN Feng-zhu, .. Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone.[J]. Journal of Beijing Forestry University, 2015, 37(11): 89-99. doi: 10.13332/j.1000-1522.20150067

沙漠绿洲过渡带柽柳灌丛沙堆—丘间地系统土壤粒度分异规律

doi: 10.13332/j.1000-1522.20150067
基金项目: 

国家自然科学基金项目(41371042)、“十二五”国家科技支撑计划项目(2014BAC14B02)。

详细信息
    作者简介:

    刘进辉。主要研究方向:荒漠环境和沙漠化防治。Email: kkxlymn@163.com 地址:830011新疆维吾尔族自治区乌鲁木齐市北京南路818号。
    责任作者: 王雪芹,博士,副研究员。主要研究方向:风沙地貌、沙漠化过程及其防治。Email: xqwang@ms.xjb.ac.cn 地址:同上。

    刘进辉。主要研究方向:荒漠环境和沙漠化防治。Email: kkxlymn@163.com 地址:830011新疆维吾尔族自治区乌鲁木齐市北京南路818号。
    责任作者: 王雪芹,博士,副研究员。主要研究方向:风沙地貌、沙漠化过程及其防治。Email: xqwang@ms.xjb.ac.cn 地址:同上。

Spatial heterogeneity of soil grain size on Tamarix ramosissima nebkhas and interdune in desert-oasis ecotone.

  • 摘要: 以塔克拉玛干沙漠南缘策勒绿洲西部过渡带为研究区,从风沙地貌的角度详细研究了柽柳灌丛沙堆—丘间地系统土壤粒度空间异质性变化规律。结果表明,研究区以极细沙为主,其次为粉沙和细沙,属于风力有效搬运的粒径范围。随着植被总盖度从30%→15%~20%→10%→5%降低,0~10 cm土层平均粒径从74.41→77.28→86.29→92.71 μm变化,并伴随着黏粒消失和粗沙出现。相同植被条件下,以灌丛下土壤平均粒径最小、沙堆边缘和风影区次之、丘间地最大,分选性则以丘间地最好而灌丛下最差。过渡带植被可截获相当部分远程输送的悬移质,使表土物质组成细化;灌丛沙堆明显的细粒富集效应及丘间地土粒相对粗化与风力分选和沙物质原地再分配密切相关;随着植被总盖度降低到5%以下,灌丛沙堆及丘间地普遍发生风蚀,表土粒度组成粗化,“资源岛”效应消失。至少要维持大于10%的植被覆盖是过渡带灌丛沙堆科学保育的前提。

     

  • [1] YANG Y T, ZHENG D, ZHANG X Q, et al. The spatial coupling of land use changes and its environmental effects on Hotan oasis during 1980-2010 [J]. Acta Geographical Sinica, 2013, 68(6): 813-824.
    [1] TENGBERG A. Nebkha dunes as indicators of wind erosion and land degradation in the Sahel zone of Burkina Faso[J]. Journal of Arid Environments, 1995, 30(3): 265-282.
    [2] WANG X Q,HU Y F,YANG D L, et al. Effect of Alhagi sparsifolia community on wind block and drift sand control in the oasis-desert ecotone[J]. Arid Land Geography, 2011, 34(6): 919-925.
    [2] COMELIS W M. Hydroclimatology of wind erosion in arid environments (Chapter 9)[M]∥DODORICO P, PORPORATO A. Dryland ecohydrology. Dordrecht, Netherlands: Springer, 2006: 141-159.
    [3] YOUSSEF F, VISSER S M, KARSSENBERG D, et al. The effect of vegetation patterns on wind-blown mass transport at the regional scale: a wind tunnel experiment[J]. Geomorphology, 2012, 159: 178-188.
    [3] QIAN Y B, ZHANG X M, LI X M. A study on grain-size features of sand material of the oases in the southern margin of the Taklimakan Desert [J]. Journal of Desert Research, 1995, 15(2): 131-135.
    [4] FIELD J P, BRESHEARS D D, WHICKER J J. Toward a more holistic perspective of soil erosion: why aeolian research needs to explicitly consider fluvial processes and interactions[J]. Aeolian Research, 2009, 1(1): 9-17.
    [4] YANG F. Research on the morphological interactions between Tamarix ramosissima thickets and nebkhas under different sand supply conditions[D]. Beijing: Graduate University of Chinese Academy of Sciences, 2012.
    [5] MC TAINSH G H, LYNCH A W, TEWS E K. Climate controls upon dust storm occurrence in eastern Australia[J]. Journal of Arid Environments, 1998, 39(3): 457-466.
    [5] QIAN G Q, DONG Z B, LUO W Y, et al. Grain size characteristics and spatial variation of surface sediments in the Badain Jaran Desert [J]. Journal of Desert Research, 2011, 31(6): 1357-1364.
    [6] FIELD J P, BELNAP J, BRESHEARS D D, et al. The ecology of dust[J]. Frontiers in Ecology and the Environment, 2010, 8(8): 423-430.
    [6] CHEN G T. Techniques for controlling sand hazards[M]. Beijing: Chemical Industry Press, 2004.
    [7] L P, DONG Z B, ZHAO A G, et al. Effect of shrub density on grain sizes and threshold wind velocity [J].Journal of Sediment Research, 2011(3): 63-66.
    [7] LARNEY F J, BULLOCK M S, JANZEN H H, et al. Wind erosion effects on nutrient redistribution and soil productivity [J]. Soil Water Conserv, 1998, 53(2): 133-140.
    [8] YANG D L. Study on the wind-blown sand activities of three typical land surfaces in Cele oasis-desert ecotone[D]. Beijing:Graduate University of Chinese Academy of Sciences, 2011.
    [8] DUPONT S, BERGAMETTI G, SIMOENS S. Modeling aeolian erosion in presence of vegetation[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(2): 168-187.
    [9] LANCASTER N, BAAS A. Influence of vegetation cover on sand transport by wind: field studies at Owens Lake, California[J]. Earth Surface Processes and Landforms, 1998, 23(1): 69-82.
    [9] GAO C J, LIU Q, WANG Y X, et al. Grain-size characteristics of sand materials in Tamarix cone veins and wind sandy environmental change in the southern region of Taklimakan Desert [J]. Research of Soil and Water Conservation, 2014, 21(3): 41-46.
    [10] LI J, OKIN G S, EPSTEIN H E. Effects of enhanced wind erosion on surface soil texture and characteristics of windblown sediments[J]. Journal of Geophysical Research: Biogeosciences, 2009, 114(G2): 1-8.
    [10] WU Z. Aeolian geomorphology[M]. Beijing: Science Press, 1987: 39-44.
    [11] WU S L, LI Z Z, HUI J, et al. Study on the distribution character of surface pressure of nabkha in wind-tunnel imitative experiment[J]. Arid Land Geography, 2006, 29(6): 790-796.
    [11] OKIN G S, MAHOWALD N, CHADWICK O A, et al. Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems[J]. Global Biogeochemical Cycles, 2004, 18(2): 1-9.
    [12] LI Z Z, WU S L, XIAO C X, et al. Study on wind-tunnel simulated flow pattern over Nabkha in Hetian River Basin, Xinjiang(Ⅱ)[J]. Journal of Desert Research, 2007, 27(1): 15-19.
    [12] OKIN G S, GILLETTE D A. Distribution of vegetation in wind-dominated landscapes: implications for wind erosion modeling and landscape processes[J]. Journal of Geophysical Research: Atmospheres, 2001, 106(D9): 9673-9683.
    [13] LI Z Z, WU S L, WANG X F, et al. Bio-geomorphologic growth process of Tamarix nabkha in the Hotan River Basin of Xinjiang [J]. Acta Geographical Sinica, 2007, 62(5): 462-470.
    [13] PUIGDEFABREGAS J. The role of vegetation patterns in structuring runoff and sediment fluxes in drylands[J]. Earth Surface Processes and Landforms, 2005, 30(2): 133-147.
    [14] RAVI S, D’ODORICO P, OKIN G S. Hydrologic and aeolian controls on vegetation patterns in arid landscapes[J]. Geophysical Research Letters, 2007, 34(24): 1-5.
    [14] LIU H X, LI J C, SU Z Z, et al. The characteristics of grain size and chemical elements of the nebkha sediments in the southwestern margin of the Mu Us Sand Land[J]. Journal of Desert Research, 2015, 35(1): 24-31.
    [15] WANG H L, GAO J L, YUAN W J, et al. Spatially heterogeneous characteristics of surface soil particles around nebkhas in the Gobi Desert[J]. Chinese Journal of Plant Ecology, 2013, 37(5): 464-473.
    [15] LI J, OKIN G S, ALVAREZ L, et al. Quantitative effects of vegetation cover on wind erosion and soil nutrient loss in a desert grassland of southern New Mexico, USA[J]. Biogeochemistry, 2007, 85(3): 317-332.
    [16] JIA W R, LI S Y, GAO X Y, et al. The foliar dust grain size characteristics of different species in the Taklimakan Desert[J]. Journal of Desert Research, 2015, 34(3): 658-665.
    [16] LEENDERS J K, VAN BOXEL J H, STERK G. The effect of single vegetation elements on wind speed and sediment transport in the Sahelian zone of Burkina Faso[J]. Earth Surface Processes and Landforms, 2007, 32(10): 1454-1474.
    [17] FIELD J P, BRESHEARS D D, WHICKER J J, et al. Sediment capture by vegetation patches: implications for desertification and increased resource redistribution[J]. Journal of Geophysical Research: Biogeosciences, 2012, 117(G1): 1-9.
    [17] DU J H, YAN P, DONG Y X. The progress and prospects of nebkhas in arid areas [J]. Acta Geographical Sinica, 2010, 65(3): 339-350.
    [18] HAN Z Y, WANG X Q, YANG F, et al. Sand trapping capability of two dominant plant species in the Qira oasis-desert ecotone[J]. Arid Zone Research, 2013, 30(4): 659-665.
    [18] 杨依天, 郑度, 张雪芹, 等. 1980—2010年和田绿洲土地利用变化空间耦合及其环境效应[J]. 地理学报, 2013, 68(6): 813-824.
    [19] SHANG R Y, QI Y X, ZHAO T N, et al. Field investigation on the influence of vegetation on wind and soil erosion[J]. Research of Soil and Water Conservation, 2006, 13(4): 37-39.
    [19] 王雪芹, 胡永锋, 杨东亮, 等. 绿洲—沙漠过渡带骆驼刺群落的防风阻沙作用[J]. 干旱区地理, 2011, 34(6): 919-925.
    [20] 钱亦兵, 张希明, 李晓明. 塔克拉玛干沙漠南缘绿洲沙物质粒度特征[J]. 中国沙漠, 1995, 15(2): 131-135.
    [21] 杨帆. 差异沙源供给条件下柽柳灌丛与沙堆形态间的互馈关系[D]. 北京:中国科学院研究生院,2012.
    [22] FOLK R L, WARD W C. Brazos River bar: a study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-26.
    [23] 钱广强, 董治宝, 罗万银, 等. 巴丹吉林沙漠地表沉积物粒度特征及区域差异[J]. 中国沙漠, 2011, 31(6): 1357-1364.
    [24] 陈广庭.沙害防治技术[M]. 北京:化学工业出版社, 2004.
    [25] 吕萍, 董治宝, 赵爱国, 等. 灌丛密度对沙粒粒度和起动风速影响研究[J]. 泥沙研究, 2011(3): 63-66.
    [26] LIVINGSTONE I. Grain-size variation on a ‘complex’ linear dune in the Namib Desert[J]. Geological Society of London Special Publications, 1987, 35(1): 281-291.
    [27] 杨东亮. 策勒绿洲—沙漠过渡带典型下垫面风沙活动研究[D]. 北京:中国科学院研究生院,2011.
    [28] WIGGS G F S, THOMAS D S G, BULLARD J E, et al. Dune mobility and vegetation cover in the southwest Kalahari Desert[J]. Earth Surface Processes and Landforms, 1995, 20(6): 515-529.
    [29] 高辰晶, 刘倩, 王艳欣, 等. 塔克拉玛干沙漠南缘红柳沙包沙物质粒度特征与风沙环境变化[J]. 水土保持研究, 2014, 21(3): 41-46.
    [30] CATTLE S R, MCTAINSH G H, ELIAS S. Aeolian dust deposition rates, particle-sizes and contributions to soils along a transect in semi-arid New South Wales, Australia[J]. Sedimentology, 2009, 56(3): 765-783.
    [31] 吴正. 风沙地貌学[M]. 北京:科学出版社, 1987:39-44.
    [32] 武胜利, 李志忠, 惠军, 等. 灌丛沙堆表面压力分布特征的实验研究[J]. 干旱区地理, 2006, 29(6): 790-796.
    [33] 李志忠, 武胜利, 肖晨曦, 等. 新疆和田河流域灌丛沙堆风洞流场的实验研究(Ⅱ)[J]. 中国沙漠, 2007, 27(1): 15-19.
    [34] 李志忠, 武胜利, 王晓峰, 等. 新疆和田河流域柽柳沙堆的生物地貌发育过程[J]. 地理学报, 2007, 62(5): 462-470.
    [35] 刘海霞, 李晋昌, 苏志珠, 等. 毛乌素沙地西南缘灌丛沙丘沉积物的粒度和元素特征[J]. 中国沙漠, 2015, 35(1): 24-31.
    [36] 王淮亮, 高君亮, 原伟杰, 等. 戈壁灌丛堆周边地表土壤颗粒的空间异质特征[J]. 植物生态学报, 2013, 37(5): 464-473.
    [37] 贾文茹, 李生宇, 高晓阳, 等. 塔克拉玛干沙漠腹地不同种类植物叶面滞尘粒度特征[J]. 中国沙漠, 2015, 34(3): 658-665.
    [38] SEIFEERT C L, COX R T, FORMAN S L, et al. Relict nebkhas (pimple mounds) record prolonged late Holocene drought in the forested region of south-central United States[J]. Quaternary Research, 2009, 71(3): 329-339.
    [39] 杜建会, 严平, 董玉祥. 干旱地区灌丛沙堆研究现状与展望[J]. 地理学报, 2010, 65(3): 339-350.
    [40] 韩章勇, 王雪芹, 杨帆, 等. 策勒绿洲-沙漠过渡带两个建群种阻沙能力对比研究[J]. 干旱区研究, 2013, 30(4): 659-665.
    [41] 尚润阳, 祁有祥, 赵廷宁, 等. 植被对风及土壤风蚀影响的野外观测研究[J]. 水土保持研究, 2006, 13(4): 37-39.
  • 加载中
计量
  • 文章访问数:  1437
  • HTML全文浏览量:  184
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-03-16
  • 刊出日期:  2015-11-30

目录

    /

    返回文章
    返回