• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

极端干旱区胡杨细根的垂直分布和季节动态

夏延国, 董芳宇, 吕爽, 王键铭, 井家林, 李景文

夏延国, 董芳宇, 吕爽, 王键铭, 井家林, 李景文. 极端干旱区胡杨细根的垂直分布和季节动态[J]. 北京林业大学学报, 2015, 37(7): 37-44. DOI: 10.13332/j.1000-1522.20150082
引用本文: 夏延国, 董芳宇, 吕爽, 王键铭, 井家林, 李景文. 极端干旱区胡杨细根的垂直分布和季节动态[J]. 北京林业大学学报, 2015, 37(7): 37-44. DOI: 10.13332/j.1000-1522.20150082
XIA Yan-guo, DONG Fang-yu, WANG Jian-ming, JING Jia-lin, LI Jing-wen, . Vertical distribution and seasonal dynamics of fine roots in Populus euphratica plantation in the extremely drought area[J]. Journal of Beijing Forestry University, 2015, 37(7): 37-44. DOI: 10.13332/j.1000-1522.20150082
Citation: XIA Yan-guo, DONG Fang-yu, WANG Jian-ming, JING Jia-lin, LI Jing-wen, . Vertical distribution and seasonal dynamics of fine roots in Populus euphratica plantation in the extremely drought area[J]. Journal of Beijing Forestry University, 2015, 37(7): 37-44. DOI: 10.13332/j.1000-1522.20150082

极端干旱区胡杨细根的垂直分布和季节动态

基金项目: 

国家自然科学基金项目(310575332)、林业行业公益重大专项(201404304)

详细信息
    作者简介:

    夏延国。主要研究方向:生物多样性。Email:xiayanguowh@126.com 地址:100083北京市清华东路35号北京林业大学林学院。

    责任作者:

    李景文,教授,博士生导师。主要研究方向:生物多样性。Email: lijingwen@bjfu.edu.cn 地址:同上。

Vertical distribution and seasonal dynamics of fine roots in Populus euphratica plantation in the extremely drought area

  • 摘要: 以额济纳胡杨天然林为研究对象,用Minirhizotron方法对胡杨细根的垂直分布和季节动态进行了研究。研究结果表明: 1)总体上,0~20cm土层中胡杨细根的根长密度和根表面积密度最大,且与其他各层存在显著差异(P<0.05); 2)在生长季,0~40cm土层胡杨细根的生长率和生死之比均大于40~80cm土层; 3)胡杨细根的根长密度、根表面积密度和生长率均表现出单峰的季节变化趋势;死亡率在生长季呈逐渐增大的趋势;生死之比在生长季呈现出逐渐减小的季节变化趋势,而且仅在末期小于1,说明胡杨细根的季节动态是一个以生长占优势的生死交织的过程; 4)生长率和死亡率均与土壤温度存在极显著正相关性(P<0.01);生长率与土壤含水量存在极显著正相关性(P<0.01),而死亡率与土壤含水量的相关性均不显著(P>0.05)。
    Abstract: Using the minirhizotron technique, we investigated the vertical distribution and seasonal dynamics of fine roots of Populus euphratica, the dominant tree species of the riparian forests in the extremely drought area in Ejina, Inner Mongolia. The results showed that: 1) In general, the maximum of root length density and root surface area density appeared in the 0-20cm soil layer (P<0.05). 2) The average growth rate and the ratio of growth rate to death rate in the top soil layer (0-40 cm) were both higher than those in the deep soil layer (40-80cm) in the growing season. 3) As a whole, the root length density, root surface area density and growth rate showed a similar seasonal tendency with the peak value occurring in the middle period of growing season, but the death rate increased gradually. Meanwhile, the ratio of growth rate to death rate decreased gradually from April to September and dropped to < 1 at the end of the growing season. 4) The seasonal changes of growth rate and death rate were significantly and positively correlated with soil temperature (P<0.01), and there was a significant correlation between growth rate and soil water content (P<0.01). However, no significant correlation could be detected between seasonal change of death rate and soil water content (P>0.05).
  • [1]

    YE L P, ZHOU Y C, ZHOU W, et al. Response of fine root growth of Pinus massoniana middle-aged forest to fertilization[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 50-55.

    [1]

    MICHAEL T S, ADAM C G, RICHARD L L. Root Chemistry in Populus tremuloides : effects of soil nutrients, defoliation, and genotype [J]. Journal of Chemical Ecology, 2014, 40(1): 31-38.

    [2]

    DENG Q, LI T, YUAN Z Y, et al. Fine root biomass and production of four vegetation types in Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2014, 25(11): 3091-3098.

    [2] 叶立鹏, 周运超, 周玮, 等. 马尾松人工中龄林细根生长对施肥的响应[J]. 中南林业科技大学学报, 2013, 33(2): 50-55.
    [3]

    ZHANG T F, LI X W, FAN C, et al. Morphology, biomass and changes in C and Ncontents of fine roots in top soil of Cinnamomum camphora plantations[J]. Journal of Northwest A & F University: Nat Sci Ed, 2014, 42(10): 103-110.

    [3]

    MCCORMACK M L, ADAMS T S, SMITHWICK E A H, et al. Predicting fine root lifespan from plant functional traits in temperate trees[J]. New Phytologist, 2012, 195(4): 823-831.

    [4]

    ZHAO C Y, ZHAO Y, PENG S Z, et al. The growth state of Populus euphratica Oliv. and its leaf ecological characteristics in the lower reaches of Heihe River[J]. Acta Ecologica Sinica, 2014, 34(16): 4518-4525.

    [4]

    SOLLY E, SCHONING I, BOCH S, et al. Mean age of carbon in fine roots from temperate forests and grasslands with different management [J]. Biogeosciences, 2013, 10(3): 5671-5700.

    [5]

    GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytologist, 2008, 180(3): 673-683.

    [5]

    ZHANG L, ZHANG H, ZHAO C Y. Point pattern analysis of Populus euphratica population in the lower reaches of Heihe River[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3407-3412.

    [6]

    HUANG J J, JING J L,CAO D C, et al. Cloning root system distribution and architecture of different forest age Populus euphratica in Ejina Oasis[J]. Acta Ecologica Sinica, 2013, 33(14): 4331-4342.

    [6]

    MCCORMACK M L, EISSENSTAT D M, PRASAD A M, et al. Regional scale patterns of fine root lifespan and turnover under current and future climate[J]. Global Change Biology, 2013, 19(6): 1697-1708.

    [7] 邓强, 李婷, 袁志友, 等. 黄土高原4种植被类型的细根生物量和年生产量[J]. 应用生态学报, 2014, 25(11): 3091-3098.
    [7]

    JING J L. Research on the root system distribution and architecture of Populus euphratica in the extremely arid region[D]. Beijing: Beijing Forestry University, 2014.

    [8]

    FENG Q, SI J H, LI J L, et al. Feature ofroot distribution of Populus euphratica and its water uptake model in extreme arid region[J]. Advances in Earth Science, 2008, 23(7): 765-772.

    [8] 张腾飞, 李贤伟, 范川, 等. 香樟人工林土壤表层细根形态特征、生物量及碳氮含量变化[J]. 西北农林科技大学学报:自然科学版, 2014, 42(10): 103-110.
    [9]

    SI J H, FENG Q, LI J L, et al. Spatial distribution pattern of Populus euphratica fine roots in desert riparian forest [J]. 2007, 26(1): 1-4.

    [9]

    MAKITA N, HIRANO Y, MIZOGUCHI T, et al. Very fine roots respond to soil depth: biomass allocation, morphology, and physiology in a broad-leaved temperate forest[J]. Ecological Research, 2011, 26(1): 95-104.

    [10]

    MUBAREKE A, CHEN Y N, LI W H, et al. Fine root distribution of Populus euphratica Oliv. and its relations with soil factors under extremely arid environment[J]. Journal of Desert Research, 2011, 31(6): 1449-1458.

    [10] 赵传燕, 赵阳, 彭守璋, 等. 黑河下游绿洲胡杨生长状况与叶生态特征[J]. 生态学报, 2014, 34(16): 4518-4525.
    [11]

    LI B S, QIN Y R, DUAN H, et al. Genome-wide characterization of new and drought stress responsive microRNAs in Populus euphratica [J]. Journal of Experimental Botany, 2011, 62(11): 3765-3779.

    [11]

    WANG K, SONG L N, LÜ L Y, et al. Fine root biomass vertical distribution character of main afforestation tree species in horqin sandy land[J]. Bulletin of Botanical Research, 2014, 34(6): 824-828.

    [12] 张兰, 张华, 赵传燕. 黑河下游胡杨种群的点格局分析[J]. 应用生态学报, 2014, 25(12): 3407-3412.
    [12]

    SHI J W, WANG M B, CHEN J W, et al. Effects of soil resource availabilities on vertical distribution and dynamics of fine roots in a Caragana korshinskii plantation[J]. Acta Ecologica Sinica, 2011, 31(14): 3990-3998.

    [13]

    ZHANG F, CHEN J W, WANG M B. The spatial distribution and seasonal dynamics of fine roots in a young Caragana korshinskii plantation[J]. Acta Ecologica Sinica, 2012, 32(17): 5484-5493.

    [13]

    LI B S, DUAN H, LI J G, et al. Global identification of miRNAs and targets in Populus euphratica under salt stress[J]. Plant Molecular Biology, 2013, 81(6): 525-539.

    [14]

    YANG X Y, HAN Y Z, ZHANG Y X.Effects of horizontal distance on fine root biomass and seasonal dynamics in Larix principis-rupprechtii plantation[J]. Journal of Plant Ecology, 2008, 32(6): 1277-1284.

    [14]

    STUDER M H, DEMARTINI J D, DAVIS M F, et al. Lignin content in natural Populus variants affects sugar release[J]. Proceedings of the National Academy of Sciences, 2011, 108(15): 6300-6305.

    [15]

    WANG M B, CHEN J W, SHI J W, et al. The seasonal change patterns of production and mortality of fine roots in young Caragana korshinskii plantation[J]. Acta Ecologica Sinica, 2010, 30(19): 5121-5130.

    [15] 黄晶晶, 井家林, 曹德昌, 等. 不同林龄胡杨克隆繁殖根系分布特征及其构型[J]. 生态学报, 2013, 33(14): 4331-4342.
    [16] 井家林. 极端干旱区绿洲胡杨根系空间分布特征及其构型研究[D]. 北京: 北京林业大学,2014.
    [17] 冯起, 司建华, 李建林, 等. 胡杨根系分布特征与根系吸水模型建立[J]. 地球科学进展, 2008, 23(7): 765-772.
    [18] 司建华, 冯起, 李建林, 等. 荒漠河岸林胡杨吸水根系空间分布特征[J]. 生态学杂志, 2007, 26(1): 1-4.
    [19]

    BLOCK R, VAN R K, KNIGHT J. A review of fine root dynamics in Populus plantations [J]. Agroforestry Systems, 2006, 67(1): 73-84.

    [20] 木巴热克·阿尤普, 陈亚宁, 李卫红, 等. 极端干旱环境下的胡杨细根分布与土壤特征[J]. 中国沙漠, 2011, 31(6): 1449-1458.
    [21]

    IMADA S, YAMANAKA N, TAMAI S. Water table depth affects Populus alba fine root growth and whole plant biomass[J]. Functional Ecology, 2008, 22(6): 1018-1026.

    [22]

    PRITCHARD S G, STRAND A E, MCCORMACK M, et al. Fine root dynamics in a loblolly pine forest are influenced by free-air-CO 2 -enrichment: a six-year-minirhizotron study[J]. Global Change Biology, 2008, 14(3): 588-602.

    [23]

    HODGE A, BERTA G, DOUSSAN C, et al. Plant root growth, architecture and function[J]. Plant and Soil, 2009, 321(1-2): 153-187.

    [24] 王凯, 宋立宁, 吕林有, 等. 科尔沁沙地主要造林树种细根生物量垂直分布特征[J]. 植物研究, 2014, 34(6): 824-828.
    [25] 史建伟, 王孟本, 陈建文, 等. 柠条细根的分布和动态及其与土壤资源有效性的关系[J]. 生态学报, 2011, 31(14): 3990-3998.
    [26] 张帆, 陈建文, 王孟本. 幼龄柠条细根的空间分布和季节动态[J]. 生态学报, 2012, 32(17): 5484-5493.
    [27] 杨秀云, 韩有志, 张芸香. 距树干不同距离处华北落叶松人工林细根生物量分布特征及季节变化[J]. 植物生态学报, 2008, 32(6): 1277-1284.
    [28]

    LEI P F, LORENZEN M S, BAUHUS J. The effect of tree species diversity on fine-root production in a young temperate forest [J]. Oecologia, 2012, 169(4): 1105-1115.

    [29] 王孟本, 陈建文, 史建伟, 等. 柠条人工幼林细根生长和死亡的季节变化[J]. 生态学报, 2010, 30(19): 5121-5130.
    [30]

    POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control [J]. New Phytologist, 2012, 193(1): 30-50.

    [31]

    MCCORMACK M L, ADAMS T S, SMITHWICK E A, et al. Variability in root production, phenology, and turnover rate among 12 temperate tree species [J]. Ecology, 2014, 95(8): 2224-2235.

    [32]

    LALIBERTE E, SHIPLEY B, NORTON D A, et al. Which plant traits determine abundance under long-term shifts in soil resource availability and grazing intensity[J]. Journal of Ecology, 2012, 100(3): 662-677.

    [33]

    WANG H, LIU S R, WANG J X, et al. Dynamics and speciation of organic carbon during decomposition of leaf litter and fine roots in four subtropical plantations of China[J]. Forest Ecology and Management , 2013, 300(15): 43-52.

    [34]

    CHENG Y H, HAN Y Z, WANG Q C, et al. Seasonal dynamics of fine root biomass, root length density, specific root length, and soil resource availability in a Larix gmelinii plantation[J]. Frontiers of Biology in China, 2006, 1(3): 310-317.

  • 期刊类型引用(2)

    1. 武舒,王洲,张明艳,钟姗辰,王黎,苏晓华,张冰玉. PagHK3a基因敲除对银腺杨抗旱性的影响. 林业科学研究. 2023(05): 1-11 . 百度学术
    2. 梁青兰,韩友吉,乔艳辉,谢孔安,李双云,董玉峰,李善文,张升祥. 干旱胁迫对黑杨派无性系生长及生理特性的影响. 北京林业大学学报. 2023(10): 81-89 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  1950
  • HTML全文浏览量:  261
  • PDF下载量:  25
  • 被引次数: 7
出版历程
  • 收稿日期:  2015-04-16
  • 修回日期:  2015-04-16
  • 发布日期:  2015-07-30

目录

    /

    返回文章
    返回