Assessment of WEPP model applicability in Beijing mountainous area
-
摘要: 土壤侵蚀是目前全球面临的环境问题之一。如何防治及准确预测水土流失已成为研究土壤侵蚀面临的巨大挑战。基于降雨事件及水文过程,WEPP模型的产生为土壤流失预测及评估提供了重要支撑。基于2001—2006年北京延庆径流小区的次降雨及25场次野外径流小区监测数据,对WEPP模型的参数进行了率定与验证,评价了该模型在北京土石山区的适用性,对北京土石山区土壤侵蚀及其预报具有重要意义。在北京山区褐土表土(0~10 cm)条件下,通过计算实测值和模拟值的最小累积误差法率定模型土壤参数,同时采用Nash-Sutcliffe效率系数(E)和决定系数(R2)对模型有效性进行验证。结果表明,当模型有效水力传导系数、临界剪切力和细沟土壤可蚀性分别为1.400 mm/h、1.000 Pa和0.010 s/m时,模型模拟效果最佳,且径流量的模拟效果(E=0.730)优于侵蚀量的模拟效果(E=0.670)。相关系数和通径系数显示,关于降雨参数对径流量和侵蚀量的影响,最大30 min雨强(I30)与其呈极显著相关,对其直接影响最大;其次是降雨量;而降雨历时与径流量和侵蚀量没有关系,对其直接影响最小。Abstract: Soil erosion is one of the global environmental problems at present. Accurate prediction and prevention of soil erosion has become a huge challenge. The development of WEPP model provides an important support for the prediction and assessment of soil erosion. To evaluate the applicability of WEPP model in Beijing mountainous area, we measured rainfall-runoff-sediment data during 2001-2006 at Yanqing field runoff plots of Beijing and applied them in model calibration and validation. We evaluated the applicability of WEPP model in the mountainous area of Beijing, which has important implications for soil erosion prediction in mountainous areas. Under cinnamon topsoil (0-10 cm) condition, the minimum cumulative error and Nash-Sutcliffe efficiency coefficient (E) were used to perform model calibration and validation. Results showed that the calibrated values of effective hydraulic conductivity, soil critical shear, and rill erodibility were 1.400 mm/h, 1.000 Pa and 0.010 s/m, respectively. For the validation, the WEPP model presented a higher simulated accuracy for runoff than for erosion yield according to E of 0.730 and 0.670. Correlation coefficients and path analysis of rainfall parameters indicated that 30-minute maximum rainfall intensity (I30) has the greatest impact on runoff and erosion yield, and subsequently on the precipitation. Duration of rainfall has no correlation with runoff and erosion yield, with little direct impact on them.
-
-
[2] 陈记平. WEPP 模型在南方红壤果园区的适应性研究[D] .福州:福建农林大学, 2012. [2] CHEN J P. Study on the adaptability of WEPP model to the red soil orchard area in south China [D] .Fuzhou:Fujian Agriculture and Forestry University, 2012.
[3] 史婉丽, 杨勤科, 张光辉. WEPP 模型的最新研究进展[J] . 干旱地区农业研究, 2006, 24(6): 173-177. [3] SHI W L, YANG Q K, ZHANG G H. Current progress in water erosion prediction project [J] . Agricultural Research in the Arid Areas, 2006, 24(6): 173-177.
[4] SINGH R K, PANDA R K, SATAPATHY K K, et al. Simulation of runoff and sediment yield from a hilly watershed in the eastern Himalaya, India using the WEPP model[J] . Journal of Hydrology, 2011, 405(3): 261-276.
[4] MIU C Y. Application of WEPP model in purple soil area and the comparison of WEPP model with USLE model [D] .Chongqing: Southwest Agricultural University, 2005.
[5] ZHENG F L, ZHANG X C, WANG J X. WEPP model and its application evaluation in the Loess Plateau[M] . Beijing: Science Press, 2010.
[5] ABACI O, PAPANICOLAOU A N. Long-term effects of management practices on water-driven soil erosion in an intense agricultural sub-watershed: monitoring and modelling [J] . Hydrological Processes, 2009, 23(19): 2818-2837.
[6] YANG J H, WU J D , QI S L, et al. Technical practices for building clean small watershed in Beijing[J] . Science of Soil and Water Conservation, 2007, 5(4):18-21.
[6] LAFLEN J M, FLANAGAN D C, ENGEL B A. Soil erosion and sediment yield prediction accuracy using WEPP [J] . JAWRA, 2004, 40(2):289-297.
[7] SAGHAFIAN B, MEGHDADI A R, SIMA S. Application of the WEPP model to determine sources of run-off and sediment in a forested watershed [J] . Hydrological Processes, 2014,29:481-497.
[7] FAN D X. Study on slope soil erosion response and model simulation in Beijing mountainous area [D] .Beijing:Beijing Forestry University, 2014.
[8] 缪驰远. WEPP 模型在紫色土地区的应用及与 USLE 的对比研究 [D] .重庆:西南农业大学, 2005. [8] QIAO Y F, JIANG D W, TIAN Y Z. Discuss on design of the synthetic science demonstration plot of water and soil conservation [J] . Bulletin of Soil and Water Conservation, 2006, 26(1): 85-88.
[9] HE J J, CAI Q G, WANG X Q, et al. Study on optimized patterns of soil and water conservation measures on sloping fields in earth-rocky mountainous area of northern China [J] . Geographical Research, 2010, 29(6): 1017-1026.
[9] 郑粉莉, 张勋昌, 王建勋 .WEPP模型及其在黄土高原的应用评价[M] .北京:科学出版社, 2010. [10] ZENG X Q, LIU H P, LU B J, et al. Fractal dimension of soil particle-size distribution characteristic in the Beijing mountains [J] . Journal of Mountain Science, 2008, 26(1): 65-70.
[10] 杨进怀, 吴敬东, 祁生林, 等. 北京市生态清洁小流域建设技术措施研究[J] . 中国水土保持科学, 2007, 5(4):18-21. [11] 樊登星. 北京山区坡面土壤侵蚀响应特征及模型模拟研究[D] . 北京:北京林业大学, 2014. [11] MIU C Y, HE B H, CHEN X Y, et al. Study on the application and contrast of CLIGEN and BPCDG in WEPP model application [J] . Chinese Agricultural Science Bulletin, 2004, 20 (6):321-324.
[12] WANG J X. Assessment on WEPP model (hillslope version) applicability to hilly-gully region on the Loess Plateau [D] .Yangling: Northwest A F University, 2007.
[12] 乔彦芬, 姜德文, 田玉柱. 综合型水土保持科技示范园的规划设计:以北京市延庆县水土保持科技示范园为例[J] . 水土保持通报, 2006, 26(1): 85-88. [13] WANG J X, ZHENG F L, JIANG Z S, et al. Assessment of WEPP model applicability (hillslope version) on hill-gully region of the Loess Plateau:a case study in slope length factor [J] . Bulletin of Soil and Water Conservation, 2007, 27(2): 50-55.
[13] 和继军, 蔡强国, 王学强. 北方土石山区坡耕地水土保持措施的空间有效配置[J] . 地理研究, 2010, 29(6): 1017-1026. [14] CHEN A Q, MA W G, GAO F J, et al. Effects of slope length on runoff and soil erosion in rocky mountain runoff plots [J] . Research of Soil and Water Conservation, 2007, 42 (4):190-196.
[14] 曾宪勤, 刘和平, 路炳军, 等. 北京山区土壤粒径分布分形维数特征[J] . 山地学报, 2008, 26(1): 65-70. [15] 缪驰远, 何丙辉, 陈晓燕, 等. WEPP 模型中的 CLIGEN 与 BPCDG 应用对比研究[J] . 中国农学通报, 2004, 20 (6):321-324. [15] SU F. Application of WEPP model in fallow of purple soil and analysis for the weights of its influencing factors [D] .Chongqing: Southwest University, 2008.
[16] LIU Y L. Assessment on WEPP model (hillslope version) applicability to the black soil region in Norwest China [D] .Yangling: Northwest A F University, 2010.
[16] 王建勋. WEPP 模型 (坡面版) 在黄土高原丘陵沟壑区的适用性评价[D] . 杨凌: 西北农林科技大学, 2007. [17] 王建勋, 郑粉莉, 江忠善, 等. WEPP 模型坡面版在黄土丘陵沟壑区的适用性评价:以坡长因子为例[J] . 水土保持通报, 2007, 27(2): 50-55. [18] ZHANG X C. Calibration, refinement, and application of the WEPP model for simulating climatic impact on wheat production [J] . Transactions of the Asae, 2004, 47(4): 1075-1085.
[19] 陈安强, 马文贵, 高福军, 等. 土石山区径流小区坡长对径流量和侵蚀量影响的研究[J] . 水土保持研究, 2007, 42 (4):190-196. [20] 苏锋. WEPP 模型在紫色土休闲地的应用及其因子权重分析[D] . 重庆: 西南大学, 2008. [21] 刘远利. WEPP 模型 (坡面版) 在东北黑土区的适用性评价[D] . 杨凌:西北农林科技大学, 2010. -
期刊类型引用(9)
1. 陈仕媛,马岚,陈佩岩. 北方土石山区不同粒径团聚体特征及其对坡面侵蚀过程的影响. 水土保持研究. 2025(02): 102-110+139 . 百度学术
2. 曹一鸣,姬翠翠,裴向军,李霞,陈立川,梁丹,陈茂霖,潘建平. 多模型耦合的流域水土流失监测方法研究. 生态学报. 2024(14): 6037-6052 . 百度学术
3. 胡剑汝,饶良懿,申震洲. 基于WEPP的砒砂岩坡面复合侵蚀治理生态水文效应评价. 水土保持学报. 2020(02): 123-129+238 . 百度学术
4. 胡译水,齐实,李昱彤,周金星,伍冰晨. 污泥堆肥施用对土壤及地下水影响研究. 中国环境科学. 2020(05): 2157-2166 . 百度学术
5. 安妙颖,韩玉国,徐磊,孙若修,庞丹波. 基于KINEROS2对坡面径流侵蚀及总氮流失的模拟分析. 应用基础与工程科学学报. 2019(04): 753-767 . 百度学术
6. 陈佩岩,马岚,薛孟君,梅雪梅,张栋,孙一惠. 华北土石山区不同粒径土壤团聚体特征及其与坡面侵蚀定量关系. 北京林业大学学报. 2018(08): 64-71 . 本站查看
7. 李想,曾以禹,朱思雨,牛健植,李娇,杜晓晴. 北京山区径流侵蚀过程及WEPP模型适用性评价. 水土保持学报. 2018(03): 98-106 . 百度学术
8. 邬铃莉,王云琦,王晨沣,王玉杰,王彬. 降雨类型对北方土石山区坡面土壤侵蚀的影响. 农业工程学报. 2017(24): 157-164 . 百度学术
9. 邬铃莉,杨文涛,王云琦,王玉杰. 基于WEPP模型的水土保持措施因子与侵蚀量关系研究. 土壤通报. 2017(04): 955-960 . 百度学术
其他类型引用(15)
计量
- 文章访问数: 1788
- HTML全文浏览量: 281
- PDF下载量: 30
- 被引次数: 24