高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮添加对典型阔叶红松林凋落叶分解及养分释放的影响

毛宏蕊 陈金玲 金光泽

毛宏蕊, 陈金玲, 金光泽. 氮添加对典型阔叶红松林凋落叶分解及养分释放的影响[J]. 北京林业大学学报, 2016, 38(3): 21-31. doi: 10.13332/j.1000-1522.20150139
引用本文: 毛宏蕊, 陈金玲, 金光泽. 氮添加对典型阔叶红松林凋落叶分解及养分释放的影响[J]. 北京林业大学学报, 2016, 38(3): 21-31. doi: 10.13332/j.1000-1522.20150139
MAO Hong-rui, CHEN Jin-ling, JIN Guang-ze. Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31. doi: 10.13332/j.1000-1522.20150139
Citation: MAO Hong-rui, CHEN Jin-ling, JIN Guang-ze. Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest[J]. Journal of Beijing Forestry University, 2016, 38(3): 21-31. doi: 10.13332/j.1000-1522.20150139

氮添加对典型阔叶红松林凋落叶分解及养分释放的影响

doi: 10.13332/j.1000-1522.20150139
基金项目: 

中央高校基本科研业务费专项(DL13EA05)

详细信息
    作者简介:

    毛宏蕊。主要研究方向:森林生态学。Email:damao731@126.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心。
    责任作者: 金光泽,教授,博士生导师。主要研究方向:森林生态学。Email:taxus@126.com 地址:同上。

    毛宏蕊。主要研究方向:森林生态学。Email:damao731@126.com 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心。
    责任作者: 金光泽,教授,博士生导师。主要研究方向:森林生态学。Email:taxus@126.com 地址:同上。

Effects of nitrogen addition on litter decomposition and nutrient release in typical broadleaf-Korean pine mixed forest

  • 摘要: 为探索氮添加对原始阔叶红松林凋落叶分解及养分动态的影响,以红松、枫桦、水曲柳及3个树种混合凋落叶为研究对象,采用凋落物袋法,进行了2年的分解试验。施N水平分别为N0(0 kg/(hm2·a))、N1(30 kg/(hm2·a))、N2(60 kg/(hm2·a))和N3(120 kg/(hm2·a))。结果表明:施N对混合凋落叶分解影响显著(P0.05)。凋落叶质量残留率与其基质N含量呈显著负相关,与碳含量及C/N比均为显著正相关。施N促进凋落叶N含量升高,凋落叶P含量受时间和N处理交互作用影响显著。施N促进水曲柳凋落叶N、P释放,抑制红松、枫桦和混合凋落叶N、P释放。N3处理抑制红松凋落叶C释放,促进水曲柳凋落叶C释放,N1处理促进水曲柳与混合凋落叶C释放。说明N处理能够调节养分释放模式,并对森林生态系统C及养分循环有显著调控作用。

     

  • [1] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future [J]. Biogeochemistry, 2004, 70: 153-226.
    [1] MO J M, XUE J H, FANG Y T. Litter decomposition and its responses to simulated N deposition for the major plants of Dinghushan forests in subtropical China [J]. Acta Ecologica Sinica, 2004, 24(7): 1413-1420.
    [2] LIU Y, WU Y X, HAN S J, et al. Litterfall decomposition in four forest types in Changbai Mountains of China [J]. Chinese Journal of Ecology, 2009, 28(3): 400-404.
    [2] FREY S D, OLLINGER S, NADELHOFFER K J, et al. Chronic nitrogen additions suppress decomposition and sequester soil carbon in temperate forests [J]. Biogeochemistry, 2014, 121: 305-316.
    [3] CHEN J L, JIN G Z, ZHAO F X. Litter decomposition and nutrient dynamics at different succession stages of typical mixed broadleaved Korean pine forest in Xiaoxing'an Mountains, China [J]. Chinese Journal of Applied Ecology, 2010, 21(9): 2209-2216.
    [3] HÖGBERG P. Environmental science: nitrogen impacts on forest carbon [J]. Nature, 2007, 447: 781-782.
    [4] CHAPIN F S, ZAVALETA E S, EVINER V T, et al. Consequences of changing biodiversity [J]. Nature, 2000, 405: 234-242.
    [4] GUO R H. Effect of nitrogen addition, elevated temperature and changed precipitation on main tree species leaf litter decomposition in broad-leaved Korean pine mixed forest [D]. Shenyang: Graduate University of Chinese Academy of Science, 2012.
    [5] TU L H, HU H L, HU T X, et al. Response of Betula luminifera leaf litter decomposition to simulated nitrogen deposition in the Rainy Area of West China[J]. Chinese Journal of Plant Ecology, 2012, 36(2): 99-108.
    [5] HOFMANN A, HEIM A, GIOACCHINI P, et al. Mineral fertilization did not affect decay of old lignin and SOC in a C-13-labeled arable soil over 36 years [J]. Biogeosciences, 2009, 6: 1139-1148.
    [6] OLSON J S. Energy storage and the balance of producers and decomposition in ecological systems [J]. Ecology, 1963, 44: 322-331.
    [7] PANDEY R R, SHARMA G, TRIPATHI S K, et al. Litterfall, litter decomposition and nutrient dynamics in a subtropical natural oak forest and managed plantation in northeastern India [J]. Forest Ecology and Management, 2007, 240: 96-104.
    [8] SAYER E J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems [J]. Biological Reviews, 2006, 81: 1-31.
    [9] BERG B, MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems [J]. Environmental Reviews, 1997, 5: 1-25.
    [10] HOBBIE S E. Nitrogen effects on decomposition: a five year experiment in eight temperate sites [J]. Ecology, 2008, 89: 2633-2644.
    [11] POWERS J S, SALUTE S. Macro- and micronutrient effects on decomposition of leaf litter from two tropical tree species: inferences from a short-term laboratory incubation [J]. Plant and Soil, 2011, 346: 245-257.
    [12] KNORR M, FREY S D, CURTIS P S. Nitrogen additions and litter decomposition: a meta-analysis [J]. Ecology, 2005, 86: 3252-3257.
    [13] HINES J, REYES M, MOZDER T J, et al. Genotypic trait variation modifies effects of climate warming and nitrogen deposition on litter mass loss and microbial respiration [J]. Global Change Biology, 2014, 20: 3780-3789.
    [14] JIANG X, CAO L, ZHANG R, et al. Effects of nitrogen addition and litter properties on litter decomposition and enzyme activities of individual fungi [J]. Applied Soil Ecology, 2014, 80: 108-115.
    [15] BERG B. Initial rates and limit values for decomposition of Scots pine and Norway spruce needle litter: a synthesis for N-fertilized forest stands [J]. Canadian Journal of Forest Research, 2000, 30(1): 122-135.
    [16] VORARˇŠKOVÁ J, DOBIÁŠOVÁ P, ŠNAJDR J, et al. Chemical composition of litter affects the growth and enzyme production by the saprotrophic basidiomycete Hypholoma fasciculare [J]. Fungal Ecology, 2011, 4(6): 417-426.
    [17] AMEND A S, MATULICH K L, MARTINY J B H. Nitrogen addition, not initial phylogenetic diversity, increases litter decomposition by fungal communities[J]. Frontiers in Microbiology, 2015, 6: 109.
    [18] TRINDER C J, JOHNSON D, ARTZ R R E. Litter type, but not plant cover, regulates initial litter decomposition and fungal community structure in a recolonising cutover peatland [J]. Soil Biology Biochemistry, 2009, 41: 651-655.
    [19] SJÖBER G, KNICKER H, NILSSON S I, et al. Impact of long-term N fertilization on the structural composition of spruce litter and mor humus [J]. Soil Biology Biochemistry, 2004, 36: 609-618.
    [20] 莫江明, 薛璟花, 方运霆. 鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J]. 生态学报, 2004, 24(7): 1413-1420.
    [21] LIU J, FANG X, DENG Q, et al. CO2 enrichment and N addition increase nutrient loss from decomposing leaf litter in subtropical model forest ecosystems [J]. Scientific Reports, 2015, 5: 7952.
    [22] VIVANCO L, AUSTIN A T. Nitrogen addition stimulates forest litter decomposition and disrupts species interactions in Patagonia, Argentina [J]. Global Change Biology, 2011, 17: 1963-1974.
    [23] CORNELL S E, JICKELS T D, CAPE J N, et al. Organic nitrogen deposition on land and coastal environments: a review of methods and data [J]. Atmospheric Environment, 2003, 37: 2173-2191.
    [24] L>Ü C, TIAN H. Spatial and temporal patterns of nitrogen deposition in China: synthesis of observational data [J]. Journal of Geophysical Research, 2007, 112: D22S05. (2007-08-11)[2014-12-20]. http:∥onlinelibrary.wiley.com/ doi: 10.1029/2006JD007990.
    [25] EMMETT B A, BOXMAN A W, BREDEMEIER M, et al. Predicting the effects of atmospheric nitrogen deposition in conifer stands: evidence from the N ITREX ecosystem-scale experiments[J]. Ecosystems, 1998, 1: 352-360.
    [26] JIN G, ZHAO F, LIU L, et al. The production and spatial heterogeneity of litterfall in the mixed broadleaved-Korean pine forest of Xiaoxing'an mountains, China [J]. Journal of Korean Forest Society, 2008, 97(2): 165-170.
    [27] LIU P, HUANG J H, SUN J O. Litter decomposition and nutrient release as affected by soil nitrogen availability and litter quality in a semiarid grassland ecosystem [J]. Oecologia, 2010, 162:771-780.
    [28] KNOPS J M H, NAEEM S, REICH P B. The impact of elevated CO2, increased nitrogen availability and biodiversity on plant tissue quality and decomposition [J]. Global Change Biology, 2007, 13: 1960-1971.
    [29] ZHANG P, TIANA X, HE X, et al. Effect of litter quality on its decomposition in broadleaf and coniferous forest [J]. European Journal of Soil Biology, 2008, 44: 392-399.
    [30] ABER J D, MELILLO J M. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content [J]. Canadian Journal of Botany, 1982, 60: 2263-2269.
    [31] O'CONNELL A M, MENDHAM D S. Impact of N and P fertilizer application on nutrient cycling in jarrah (Eucalyptus marginata) forests of south western Australia [J]. Biology and Fertility of Soils, 2004, 40: 136-143.
    [32] 刘颖, 武耀祥, 韩士杰, 等. 长白山四种森林类型凋落物分解动态[J]. 生态学杂志, 2009, 28(3): 400-404.
    [33] 陈金玲, 金光泽, 赵凤霞.小兴安岭典型阔叶红松林不同演替阶段凋落物分解及养分变化[J]. 应用生态学报, 2010, 21(9): 2209-2216.
    [34] 郭瑞红. 施氮、增温和降水变化对阔叶红松林主要树种叶凋落物分解的影响[D]. 沈阳:中国科学院研究生院, 2012.
    [35] BARBHUIYA A R, ARUNACHALAM A, NATH P C, et al. Leaf litter decomposition of dominant tree species of Namdapha National Park, Arunachal Pradesh, northeast India [J]. Journal of Forest Research, 2008, 13: 25-34.
    [36] 涂利华, 胡红玲, 胡庭兴, 等. 华西雨屏区亮叶桦凋落叶分解对模拟氮沉降的响应[J]. 植物生态学报, 2012, 36(2): 99-108.
    [37] GUO L B, SIMS R E H. Litter decomposition and nutrient release via litter decomposition in New Zealand eucalypt short rotation forests [J]. Agriculture, Ecosystems and Environment, 1999, 75: 133-140.
    [38] NADELHOFFER K J, COLMAN B P, CURRIE W S, et al. Decadal-scale fates of 15N tracers added to oak and pine stands under ambient and elevated N inputs at the Harvard Forest (USA) [J]. Forest Ecology and Management, 2004, 196: 89-107.
    [39] MICKS P, DOWNS M R, MAGILL A H, et al. Decomposing litter as a sink for 15N-enriched additions to an oak forest and a red pine plantation [J]. Forest Ecology and Management, 2004, 196: 71-87.
  • 加载中
计量
  • 文章访问数:  871
  • HTML全文浏览量:  74
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-05-06
  • 刊出日期:  2016-03-31

目录

    /

    返回文章
    返回