高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于线性滤波法的单株林木抗风有限元模拟

张鳌 冀晓东 丛旭 戴显庆

张鳌, 冀晓东, 丛旭, 戴显庆. 基于线性滤波法的单株林木抗风有限元模拟[J]. 北京林业大学学报, 2016, 38(2): 1-9. doi: 10.13332/j.1000-1522.20150268
引用本文: 张鳌, 冀晓东, 丛旭, 戴显庆. 基于线性滤波法的单株林木抗风有限元模拟[J]. 北京林业大学学报, 2016, 38(2): 1-9. doi: 10.13332/j.1000-1522.20150268
ZHANG Ao, JI Xiao-dong, CONG Xu, DAI Xian-qing. Finite element modeling of wind resistance of single trees based on linear filtering method[J]. Journal of Beijing Forestry University, 2016, 38(2): 1-9. doi: 10.13332/j.1000-1522.20150268
Citation: ZHANG Ao, JI Xiao-dong, CONG Xu, DAI Xian-qing. Finite element modeling of wind resistance of single trees based on linear filtering method[J]. Journal of Beijing Forestry University, 2016, 38(2): 1-9. doi: 10.13332/j.1000-1522.20150268

基于线性滤波法的单株林木抗风有限元模拟

doi: 10.13332/j.1000-1522.20150268
基金项目: 

国家自然科学基金项目(31570708)。

详细信息
    作者简介:

    张鳌。主要研究方向:林木抗风。Email:zhangao_0221@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院。责任作者: 冀晓东,博士,副教授。主要研究方向:林木根系固土、林木抗风。Email:jixiaodong@bjfu.edu.cn 地址:同上。

    张鳌。主要研究方向:林木抗风。Email:zhangao_0221@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学水土保持学院。责任作者: 冀晓东,博士,副教授。主要研究方向:林木根系固土、林木抗风。Email:jixiaodong@bjfu.edu.cn 地址:同上。

Finite element modeling of wind resistance of single trees based on linear filtering method

  • 摘要: 风灾是林木发生破坏的主要原因之一,研究树木结构特征以及受力特点能够深入了解树木在受风荷载作用时各个部位的应力状态,确定其易发生破坏的区域,从而采取对应措施保证林木的安全稳定性。运用线性滤波法可以模拟实际状态下的脉动风模型;利用有限元技术可建立树木的有限元模型。结合两者可以模拟树木受动力风荷载作用的过程,并可计算树木各个部位的应力状态和位移等参数。模型搭建过程分为2个部分:风模拟,即运用线性滤波法编程计算得到随机的时程风场,再通过计算转换为脉动风荷载并施加于单株林木;树的模拟可根据单株树木各部分密度、弹性模量等与树高线性相关的假设,采用ANSYS中的参数化建模法(APDL)编程得到树木模型。最后编制宏文件,得到可以通过更改个别参数达到调节树模型以及脉动风场的命令流文件。在模型加载后,通过对所得到数据进行分析和比较,了解林木的抗风性能。在该模拟中,采用我国华北地区沿海防护林树种黑松为主要研究对象。通过模拟,了解单株黑松在脉动风荷载作用下的力学响应,得知材料的抗剪切性能决定其抗风能力大小,从而可采取相应措施如加固或对林木进行定期修剪,提升林木稳定性。

     

  • [1] PENG G, WANG X. Linear filtering method for wind speed simulation and model order determination [J]. Journal of Guangdong University of Technology, 2010,2(6): 32-35.
    [1] QUINE C P. Assessing the risk of wind damage to forests [J]. Forestry Commission Bulletin, 1995, 114: 379-403.
    [2] LIU X L, ZHOU Y. Numerical simulation methods of wind load [J]. Industrial Construction, 2005, 5(5): 81-84.
    [2] QUINE C P, COUTTS M, GARDINER B, et al. Forests and wind: management to minimise damage [J]. Forestry Comm, 114, 27.
    [3] MILLER K F. Windthrow hazard classification [J]. Forestry Commission Leaflet, 1985, 114(5): 14-38.
    [3] WANG Z H. Research of wind load simulation [J]. Journal of Building Structures, 1994, 15(1): 44-52.
    [4] LI Y Q, DONG S L. Research on simulation technology of large span space structure wind load simulation and programming [J]. Spatial Structures, 2001, 7(3): 3-11.
    [4] GARDINER B, QUINE C. Management of forests to reduce the risk of abiotic damage: a review with particular reference to the effects of strong winds [J]. Forest Ecology and Management, 2000, 135: 261-277.
    [5] WANG X Q, CUI J F.Formula of coefficient K in expression of Davenport spectrum and its engineering application [J]. Journal of Tongji University, 2002, 30(7): 849-852.
    [5] PELTOLA H, KELLOMAKI S. A mechanistic model for assessing the risk of wind and snow damage to single trees and stands of Scots pine, Norway spruce, and birch [J]. NRC Canada, 1999, 29: 647-661.
    [6] GARDINER B A. Comparison of two models for predicting the critical wind speeds required to coniferous trees [J]. Ecological Modelling, 2000, 129: 1-23.
    [6] WANG J, SU Y Z. The application of AR method in wind simulation for spatial structure [C]∥Proceedings of the seventh national symposium on modern structural engineering. Hangzhou: China Steel Construction Society, 2007: 742-747.
    [7] ANCELIN P, COURBAUDA B, FOURCAUD T. Development of an individual tree-based mechanical model to predict wind damage within forest stand [J]. Forest Ecology and Management, 2004, 203: 101-121.
    [7] ZHOU Y X, FAN J F, GONG Y H, et al. Growth characteristics and cold resistance of Pinus nigra var. austraca [J]. Journal of Beijing Forestry University, 2007, 29(6): 54-57.
    [8] LI Y X, JIANG L C. Modeling wood density with two-level linear mixed effects models for Dahurian larch [J]. Scientia Silvae Sinicae, 2013, 49(7): 92-98.
    [8] SELLIER D, FOURCAUD T. A finite element model for investigating effects of aerial architecture on tree oscillations [J]. Tree Physiology, 2006, 26(6): 199-206.
    [9] 彭刚, 汪新. 线性滤波法风速模拟及模型阶数确定 [J]. 广东工业大学学报, 2010, 2(6): 32-35.
    [9] XU B H, CAI J. State of the art in strength criteria for wood [J].China Civil Engineering Journal, 2015, 48(1): 64-73.
    [10] SELLIER D,FOURCAUD T. A mechanical analysis of the relationship between free oscillations of Pinus pinaster Ait: saplings and their aerial architecture [J]. Journal of Experimental Botany, 2005, 56: 1563-1573.
    [10] HAN G X, WANG G M,ZHANG Z D, et al. Population structure of the Pinus thunbergii coastal protection forest and its spatial variation at different distance to coastline in Yantai [J]. Scientia Silvae Sinicae, 2008, 44(10): 9-13.
    [11] 刘锡良, 周颖. 风荷载的几种模拟方法 [J]. 工业建筑, 2005, 5(5): 81-84.
    [11] YANG J J. Conversion table of wood physical and mechanical properties of main tree species in China [J]. China Wood Industry, 2001, 11(3): 37-41.
    [12] HU X Y, TAO W M, GUO Y M. Using FEM to predict tree motion in a wind field [J]. Journal of Zhejiang University, 2008, 9(7): 907-915.
    [12] CHEN C, HONG W, WU C Z, et al. Study of relationship between diameter at breast height(DBH) and height of coastal protection forest of Pinus elliotii E. in southeast part of China [J]. Journal of Agriculture, 2012, 11(2): 35-41.
    [13] 王之宏. 风荷载的模拟研究 [J]. 建筑结构学报, 1994, 15(1): 44-52.
    [13] Research Institute of Wood Industry, CAF. The physical and mechanical properties of main tree species in China [M]. Beijing: China Forestry Publishing House, 1982: 25-37.
    [14] 李元齐, 董石麟. 大跨空间结构风荷载模拟技术研究及程序编制 [J]. 空间结构, 2001, 7(3): 3-11.
    [14] SONG R B. Graphics simulation of the canopy of larch plantation [D].Harbin: Northeast Forestry University, 2003: 31-55.
    [15] 王修琼, 崔剑峰. Davenport谱中系数K的计算公式及其工程应用 [J]. 同济大学学报,2002, 30(7): 849-852.
    [16] 王娟, 苏英志. AR法在空间结构风场模拟中的应用 [C]∥第七届全国现代结构工程学术研讨会论文集.杭州:中国钢结构协会, 2007: 742-747.
    [17] 周永学, 樊军锋, 龚月桦, 等. 奥地利黑松的生长特性及抗寒性研究 [J]. 北京林业大学学报, 2007, 29(6): 54-57.
    [18] 李耀翔, 姜立春. 基于2层次线性混合模型的落叶松木材密度模拟 [J]. 林业科学, 2013, 49(7): 92-98.
    [19] 徐博瀚, 蔡竞. 木材强度准则的研究进展 [J]. 土木工程学报, 2015, 48(1): 64-73.
    [20] GARDINER B, PELTOLA H, KELPMAKI S. Comparison of two models for predicting the critical wind speeds required to damage coniferous trees [J]. Ecological Modelling, 2000, 129(3): 10-23.
    [21] 韩广轩, 王光美, 张志东,等. 烟台海岸黑松防护林种群结构极其随离岸距离的变化 [J].林业科学, 2008, 44(10): 9-13.
    [22] 杨家驹. 中国主要树种木材物理力学数据换算表 [J]. 木材工业, 2001, 11(3): 37-41.
    [23] ZHANG L. Cross-validation of non-linear growth functions for modeling tree height and diameter relationships [J]. Annals of Botany, 1997, 79(3): 251-257.
    [24] 陈灿, 洪伟, 吴承祯, 等. 东南沿海湿地松防护林胸径树高关系研究 [J]. 农业学报, 2012,11(2): 35-41.
    [25] 中国林业科学研究院木材工业研究所. 中国主要树种的木材物理力学性质 [M]. 北京:中国林业出版社,1982: 25-37.
    [26] 宋仁波. 落叶松人工林树冠的三维图形模拟 [D]. 哈尔滨: 东北林业大学, 2003: 31-55.
  • 加载中
计量
  • 文章访问数:  1079
  • HTML全文浏览量:  132
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-07-21
  • 修回日期:  2015-11-26
  • 刊出日期:  2016-02-29

目录

    /

    返回文章
    返回