Design of an intelligent wood surface grading system based on computer vision
-
摘要: 设计一种集实木传送、图像定位与采集、实木板材表面识别与分选的智能系统,系统通过传送带运送实木板材,CCD摄像头获取板材图像,在触摸屏工控机TPC700-9190T上应用MFC与OpenCV编写分选程序对板材图像进行分析,识别结果通过STM32单片机控制电磁阀完成实木板材的分类。在图像定位与识别算法中,采用积分投影算法确定板材边界,动态采集板材表面图像;在颜色分类方面,利用L*a*b*空间颜色分量的均值、方差和斜度3个低阶矩表达颜色;在缺陷检测方面,提出了基于纹理填充的缺陷分割方法,通过获取纹理掩膜图像,然后利用板材背景颜色淡化纹理,最后应用加权阈值法完成缺陷分割,分割后计算缺陷面积、边缘灰度均值、内部灰度均值和长宽比等特征表达缺陷信息;在纹理识别方面,提出了基于Contourlet变换的纹理特征提取方法,通过对纹理图像进行Contourlet变换3层分解,得到1个低频子带、6个中频子带和8个高频子带,分别计算低频和中频系数矩阵的均值和方差,并与高频系数矩阵的能量组成22个特征表达纹理信息;最后设计SVM分类器,分别对颜色、缺陷和纹理进行识别。采用300个柞木样本进行实验,板材传送速度在小于1.5 m/s范围内,颜色识别准确率为100%;活节、死结和裂纹识别准确率分别为92.2%、95.6%和93.3%;直纹、弯纹识别准确率分别为93.9%、92.8%。实验结果表明,分选系统具有实时、高效、准确的特点。Abstract: An intelligent system for wood surface detection is designed, which integrates plate transmission, image acquisition, image recognition and sorting equipment. The convey belt is used to carry plates, CCD is employed to acquire images, the recognition program is written by MFC and Open CV in the touch screen industrial computer, and the solenoid valve is controlled by STM32 according to recognition results. In the image localization process, the integral projection method is used to determine the boundary of the plates. In the color classification, the mean, variance and skewness features of the L*a*b* space are extracted to express color information. In the defect detection, a segmentation method based on texture filling is proposed. The texture of the image is extracted and the background color is used to fade the texture part which can reduce impact of texture’s effect, and then weighted threshold is used to segment the defects. After segmentation, the features of area, the edge gray value, the internal gray value and the length and width ratio are used to express defects. In texture recognition, the texture feature extraction method based on Contourlet transform is proposed. By Contourlet transform, one sub-band, six intermediate frequency sub-bands and eight high frequency sub-bands are obtained. By calculating the mean and variance of the low frequency and intermediate frequency coefficients, a 22-dimension feature vector is obtained with the energy of high frequency coefficient matrix. Finally, a SVM classifier is designed to recognize the color, defect and texture. A total of 300 samples are used in the test experiment, when convey speed is under 1.5 m/s, and the classification rate of color is 100%, the recognition rate of live knot, dead knot and crack are 92.2%, 95.6% and 93.3% respectively, and the recognition rate of radial texture and tangential texture are 93.9% and 92.8% respectively.
-
Keywords:
- wood classification /
- online testing /
- computer vision /
- texture recognition /
- defect detection
-
-
[1] ZHANG Y Z,MA L,XU L, et al. Wood board texture classification based on genetic fusion of wavelet and curvelet features[J]. Journal of Beijing Forestry University, 2014, 36(2):119-124.
[1] 张怡卓,马琳,许雷,等.基于小波与曲波遗传融合的木材纹理分类[J].北京林业大学学报,2014,36(2):119-124. [2] QIAN Y,BAI R L, NI J, et al.Floor hierarchical classification research based on color characteristics[J].Computer Engineering and Applications,2013,49(13):245-252.
[2] RUZ G A,ESTEVEZ P A, RAMIREZ P A.Automated visual inspection system for wood defect classification using computational intelligence techniques[J]. International Journal of Systems Science,2009,40(2):163-172.
[3] BAI X B,ZOU L H.Segmentation method of timber surface defects based on gray level-gradient co-occurrence matrix[J]. Forest Engineering,2007,23(2):16-18.
[3] 钱勇,白瑞林,倪健,等. 基于颜色特征的地板层次分类研究[J].计算机工程与应用,2013,49(13):245-252. [4] WANG A C,CAO L. Fast recognition of veneer defect image based on improved contour model[J].Computer Engineering,2013,39(1):1-6.
[4] 白雪冰,邹丽晖.基于灰度-梯度共生矩阵的木材表面缺陷分割方法[J].森林工程,2007,23(2):16-18. [5] 王阿川,曹琳. 基于改进轮廓模型单板缺陷图像快速识别方法[J]. 计算机工程,2013,39(1):1-6. [5] XIE Y H,QIAN Y H,BAI X B.Classification of wood texture based on wavelet transform and fractal dimension[J]. Journal of Northeast Forestry University,2010,38(12):118-120.
[6] XU L,WANG M,WEN Y. Moving object detection using LAB color space[J]. Journal of Huazhong University of Science and Technology(Nature Science Edition),2013,41(Suppl.1):219-222.
[6] 谢永华,钱玉恒,白雪冰.基于分形理论木材表面缺陷识别的研究[J]. 东北林业大学学报,2010,38(12):118-120. [7] 许莉,王敏,温月. 基于Lab颜色空间的运动目标检测[J]. 华中科技大学学报(自然科学版),2013,41(增刊1):219-222. [7] XU K,LI Y.An image search approach based on local main color feature and texture feature[J]. Journal of Xi'an Shiyou University(Nature Science Edition),2005,20(2):77-79.
[8] ZHANG Y Z,CAO J,XU L,et al.Wood floor defects segmentation and recognition based on morphological and SOM[J].Electric Machines and Control,2013,17(4):116-120.
[8] 徐琨,李燕. 基于分块颜色矩和纹理特征的图像检索方法[J]. 西安石油大学学报(自然科学版),2005,20(2):77-79. [9] FENG G H. Parameter optimizing for support vector machines classification[J].Computer Engineering and Applications,2011,47(3):123-124,128.
[9] 张怡卓,曹军,许雷,等.实木地板缺陷形态学分割与SOM识别[J].电机与控制学报,2013,17(4):116-120. [10] DO M N, VETTERLI M. The contouelet transform: an efficient directional multiresolution image representstion[J].IEEE Transaction on Image Processing,2005,14(2):2091-2106.
[11] DO M N.Directional multiresolution image representations[D]. Canberra: University of Canberra, 2001.
[12] 奉国和. SVM分类核函数及参数选择比较[J]. 计算机工程与应用,2011,47(3):123-124,128. [13] CHANG C C, LIN C J.LIBSVM:a library guide to support vector machines[EB/OL].[2009-06-07]. http:∥www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf.
-
期刊类型引用(13)
1. 熊海贝,龙有为,陈琳,丁叶蔚. 木结构无损检测技术研究与应用综述. 结构工程师. 2023(01): 191-201 . 百度学术
2. 王祺,冯鑫浩,史诗琪,杨兆哲,詹先旭,吴智慧. 机器视觉在木制品制造中的应用. 木材科学与技术. 2022(05): 17-24 . 百度学术
3. 王锦亚,李振业,倪超. 基于机器视觉的实木地板在线分色识别算法. 林业工程学报. 2021(05): 135-139 . 百度学术
4. 庄子龙,刘英,沈鹭翔,丁奉龙,王争光. 基于多层感知机的木材颜色分类. 林业机械与木工设备. 2020(06): 8-14 . 百度学术
5. 陈威,刘艳,雷庆. 基于智能视觉的小差异行为特征分类. 计算机科学. 2019(03): 298-302 . 百度学术
6. 孙建平,梁懿,蒋志林,柳婧如. 图像处理技术在竹木复合材料性能评估中的应用展望. 西北林学院学报. 2019(02): 246-249+256 . 百度学术
7. 王明谦,王昆,许清风. 木结构无损检测技术研究进展. 施工技术. 2019(21): 85-90 . 百度学术
8. 杜丽娟. 舰船导航系统超分辨率图像智能提取技术研究. 舰船科学技术. 2018(16): 82-84 . 百度学术
9. 何波. 篮球投射过程中的角度智能视觉图像分解判断方法. 现代电子技术. 2018(10): 175-178 . 百度学术
10. 马玉芳. 基于智能视觉的微型高精度图像采集系统设计. 现代电子技术. 2018(19): 67-70 . 百度学术
11. 魏晓慧,马晓珍,刘亚秋. 基于蜂群单阈值分割的SRC板材缺陷分类方法. 沈阳工业大学学报. 2017(03): 292-298 . 百度学术
12. 陈熔,刘杰. 基于智能视觉的特定人员检索平台设计与实现. 现代电子技术. 2017(14): 102-105 . 百度学术
13. 李晓东. 视觉传达设计认识探讨. 鸭绿江(下半月版). 2016(12): 175 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 3845
- HTML全文浏览量: 396
- PDF下载量: 34
- 被引次数: 21