• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

碱木质素改性及其纤维制备研究

薛凤莲, 林剑, 赵广杰, 张扬, 来雅婷

薛凤莲, 林剑, 赵广杰, 张扬, 来雅婷. 碱木质素改性及其纤维制备研究[J]. 北京林业大学学报, 2016, 38(5): 120-125. DOI: 10.13332/j.1000-1522.20150320
引用本文: 薛凤莲, 林剑, 赵广杰, 张扬, 来雅婷. 碱木质素改性及其纤维制备研究[J]. 北京林业大学学报, 2016, 38(5): 120-125. DOI: 10.13332/j.1000-1522.20150320
XUE Feng-lian, LIN Jian, ZHAO Guang-jie, ZHANG Yang, LAI Ya-ting. Modification and fiber preparation of soda lignin[J]. Journal of Beijing Forestry University, 2016, 38(5): 120-125. DOI: 10.13332/j.1000-1522.20150320
Citation: XUE Feng-lian, LIN Jian, ZHAO Guang-jie, ZHANG Yang, LAI Ya-ting. Modification and fiber preparation of soda lignin[J]. Journal of Beijing Forestry University, 2016, 38(5): 120-125. DOI: 10.13332/j.1000-1522.20150320

碱木质素改性及其纤维制备研究

基金项目: 

浙江省林业工程重中之重一级学科开放基金项目(2014lygcy010)

详细信息
    作者简介:

    薛凤莲,博士生。主要研究方向:木材科学与技术。Email:bjfenglian@sohu.com 地址:100083 北京市海淀区清华东路35号北京林业大学材料科学与技术学院。

    责任作者:

    林剑,博士。主要研究方向:木材科学与技术。Email:linjian0702@163.com 地址:同上。

Modification and fiber preparation of soda lignin

  • 摘要: 为改善碱木质素的熔融性能,实现熔融纺丝法制备碱木质素基纤维,以制浆造纸黑液粉末中提取的碱木质素为原料,与不同质量比的聚乙二醇-400(PEG-400)混合加热,再倒入水中搅拌不同时间后过滤干燥,测定改性处理后碱木质素的热稳定性、黏度及熔融纺丝性能等特征。结果表明:1)在相同搅拌时间时,不同质量比的PEG-400改性处理对灰分含量影响不大,木质素含量随质量比的增加而变少或不变;在相同质量比时,搅拌时间越长,灰分含量越少,木质素含量越多。2)经PEG-400改性处理的碱木质素的热分解温度增加,热稳定性能提高;但随着质量比或搅拌时间的增加,其热分解温度均减少,热稳定性能降低。3)质量比为1:1和1:2时PEG-400改性处理的碱木质素均表现出较差的熔融性能,而质量比为1:3时PEG-400改性处理的碱木质素呈现较好的熔融性能,尤其是搅拌时间为2h的碱木质素则表现出较稳定的熔融性能,并且能够在228℃温度下熔融纺丝制备得到直径约为(30±4.8)μm的碱木质素基纤维。
    Abstract: In order to improve the melting property of soda lignin and prepare soda lignin-based fibers by melt-spinning, soda lignin isolated from black liquor was heated with polyethylene glycol-400 (PEG-400) at different mass ratios and then poured into water with different stirring time, followed by filtration and drying. The thermostability and viscosity as well as melt-spinning property of treated soda lignin were determined. The conclusions are obtained as follows. 1) Within the same stirring time, there was little effect of mass ratio on the ash content, but lignin content decreased with the increase of mass ratio; at the same mass ratio, longer stirring time resulted in the less ash content and higher lignin content. 2) The decomposition temperature of soda-lignin increased after the treatment with PEG-400, but it decreased with the increasing mass ratio or stirring time. 3) Poor melting properties were observed from the soda-lignin treated by PEG-400 at the mass ratios of 1:1 and 1:2, while the soda-lignin treated by PEG-400 at the mass ratio of 1:3 showed good melting property. Especially for the stirring time of 2h, soda-lignin exhibited stable melting property and could be processed into lignin-based fibers with the average diameter of 30±4.8μm by melt-spinning at the temperature of 228℃.
  • [1]

    MAI C, MILSTEIN O, HUTTERMANN A. Chemoenzymatical grafting of acrylamide onto lignin[J]. Journal of Biotechnology, 2000, 79(2): 173-183.

    [1]

    OTANI S. Lignin based carbon fibers[J]. Synthetic Fiber in China, 2012, 41(3):43-48.

    [2] 大谷朝男. 木质素基碳纤维[J]. 合成纤维, 2012, 41(3):43-48.
    [3]

    SUDO K, SHIMIZU K. A new carbon fiber from lignin[J]. Journal of Applied Polymer Science, 1992, 44:127-134.

    [4]

    SUDO K, SHIMIZU K, NAKASHIMA N, et al. A new modification method of exploded lignin for the preparation of a carbon fiber precursor[J]. Journal of Applied Polymer Science, 1993, 48:1485-1491.

    [5]

    KUBO S, URAKI Y, SANO Y. Preparation of carbon fibers from softwood lignin by atmospheric acetic acid pulping[J]. Carbon, 1998, 36(7-8): 1119-1124.

    [6]

    ROBERT C, ECKERT B. Carbon fibers from kraft softwood lignin: US 0318043[P].2008-12-05.

    [7]

    BRODIN I, SJOHOLM E, GELLERSTEDT G. Kraft lignin as feedstock for chemical products: the effects of membrane filtration[J]. Holzforschung, 2009, 63:290-297.

    [8]

    NORDSTROM Y, JOFFE R, SJOHOLM E. Mechanical characterization and application of Weibull statistics to the strength of softwood lignin-based carbon fibers[J]. Journal of Applied Polymer Science, 2013, 129(3):1274-1279.

    [9]

    BAKER D A, GALLEGO N C, BAKER F S. On the characterization and spinning of an organic-purified lignin toward the manufacture of low-cost carbon fiber[J]. Journal of Applied Polymer Science, 2012, 124:227-234.

    [10]

    KADLA J F, KUBO S. Lignin-based polymer blends: analysis of intermolecular interaction in lignin-synthetic polymer blends[J]. Composites: Part A, 2004, 35: 395-400.

    [11]

    KUBO S, KADLA J F. Kraft lignin/poly(ethylene oxide) blends: effect of lignin structure on miscibility and hydrogen bonding[J]. Journal of Applied Polymer Science, 2005, 98: 1437-1444.

    [12]

    YOON K, TAKAHASHI S, NGE T T, et al. Thermal melting of lignin derivatives prepared from dried black liquor powder of softwood soda-AQ cooking and polyethylene glycol[J]. Bioresources, 2015, 10(1): 912-921.

    [13]

    URAKI Y, KUBO S, NIGO N, et al. Preparation of carbon fibers from organosolv lignin obtained by aqueous acetic acid pulping[J]. Holzforschung, 1995, 49(4): 343-350.

    [14]

    KAKLA J F, KUBO S, VENDITTI R A, et al. Lignin-based carbon fiber for composite fiber applications[J]. Carbon, 2002, 40(15): 2913-2920.

    [15]

    LIN J, KUBO S, YAMADA T, et al. Chemical thermostabilization for the preparation of carbon fibers from softwood lignin[J]. BioResources, 2012, 7(4):5634-5646.

    [16]

    KADLA J F, KUBO S, VENDITTI R A, et al. Lignin-based carbon fiber for composite fiber applications[J]. Carbon, 2002, 40(15):2913-2920.

    [17]

    KADLA J F, QIN W. Effect of organoclay reinforcement on lignin-based carbon fibers[J]. Industrial & Engineering Chemistry Research, 2011, 50:12548-12555.

    [18]

    URAKI Y, SUGIYAMA Y, KODA K, et al. Thermal mobility of β -O-4-Type artificial lignin[J]. Biomacromolecules, 2012, 13:867-872.

  • 期刊类型引用(4)

    1. 吴昊,刘海玉,乔晓磊,卫轶君,吴杨. 生物质及镁渣复合黏结剂制备焦粉型煤. 上海电力大学学报. 2023(02): 195-202+209 . 百度学术
    2. 尹伟明,蒋金婷,樊星,郭元茹,韩世岩. 木质素磺酸钠/三聚氰胺甲醛微球泡沫的制备及表征. 复合材料学报. 2018(09): 2362-2368 . 百度学术
    3. 徐保明,张弘,唐强,张家晖,李俊,李志鹏,陈坤. 木质素基碳纤维制备方法的研究进展. 化工新型材料. 2018(04): 23-26 . 百度学术
    4. 陈梁,辛善志,米铁,胡明华. 木质素制备活性炭的工艺及其吸附性能研究. 江汉大学学报(自然科学版). 2017(03): 219-224 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  1566
  • HTML全文浏览量:  140
  • PDF下载量:  39
  • 被引次数: 9
出版历程
  • 收稿日期:  2015-08-26
  • 修回日期:  2015-08-26
  • 发布日期:  2016-05-30

目录

    /

    返回文章
    返回