Polymerization and product characteristics of polyphenols of Pinus sylvestris var. mongolica barks and protein.
-
摘要: 将樟子松多酚分别与明胶和大豆分离蛋白进行复合,研究松多酚与蛋白质复合反应的优化条件,采用红外光谱和差式扫描量热法(DSC)对产物性质进行分析。结果表明:樟子松多酚-明胶复合反应的优化条件为多酚-明胶质量比为2∶1,温度40 ℃,时间30 min,pH 7,此条件下复合率达70.35%;樟子松多酚-大豆分离蛋白复合反应的优化条件为大豆分离蛋白-多酚质量比4∶1,温度30 ℃,时间20 in,pH5,此条件下复合率达47.21%,松多酚-明胶的复合率明显高于多酚-大豆分离蛋白的复合率(P0.05)。红外光谱结果表明:樟子松多酚和蛋白质发生交联,引起OH伸缩振动,在3 600~3 200 cm-1产生强吸收,复合后OH、NH、CH、SH等基团明显变化。DSC结果表明多酚与明胶和大豆分离蛋白的复合使产物热变性温度提高。Abstract: Polymerization of polyphenols and protein is affected by multiple factors. This study was designed to clarify the optimal polymerization conditions of gelatin and polyphenols from Pinus sylvestris var. mongolica, with soy protein isolate (SPI) as protein substrate. The characteristics of product were analyzed with infrared spectrophotometry and differential scanning calorimetry (DSC), and our goal was to improve the polymerization rate. The results showed that: for polyphenols-gelatin polymerization, the optimal conditions were the mass ratio of polyphenols to gelatin 2∶1, reaction temperature 40 ℃, 30-min duration and pH 7.0. Under these conditions, 70.35% of polyphenols were polymerized. For polyphenols-SPI polymerization, the optimal conditions were the mass ratio of SPI to polyphenols 4∶1, reaction temperature 30 ℃, reaction time 20 min and pH 5.0; in this case, 47.21% of polyphenols were polymerized. The polymerization rate of polyphenols-gelatin was significantly higher than that of polyphenols-SPI (P0.05). IR spectroscopic results showed that polyphenols and proteins were cross-linked, resulting in the OH stretching vibration and intensive absorptions were detected at the 3 600-3 200 cm-1. OH, CH, NH, SH and other groups had obvious changes after polymerization. The results of DSC showed that heat denaturation temperatures were raised after polymerization.
-
Keywords:
- Pinus sylvestris var. mongolica /
- polyphenols /
- protein /
- polymerization /
- characteristics
-
-
[1] LIU Y X, YU Q P.Wood properties and application manual in Northeast China[M]. Beijing: Chemical Industry Press,2003.
[1] 刘一星,于清鹏.中国东北地区木材性质与用途手册[M]. 北京:化学工业出版社,2003. [2] 顾剑,张宇. 樟子松树皮有效成分的初步研究[J]. 黑龙江医药科学,2009,32(3):4-9. [3] GU J, ZHANG Y. Effective components of the pine bark[J]. Heilongjiang Medicine and Pharmacy, 2009, 32(3):4-9.
[4] 阚茗铭,叶发银,赵国华.多酚-蛋白质共价作用及其对食品体系的影响[J]. 食品科学,2015,36(1):245-249. [5] KAN M M, YE F Y, ZHAO G H. The covalent interaction of polyphenol-protein and its effects on food system[J]. Food Science,2015,36(1):245-249.
[6] DUBEAU S, SAMSON G, TAJMIRRIAHI H. Dual effect of milk on the antioxidant capacity of green, Darjeeling, and English breakfast teas[J]. Food Chemistry, 2010, 122(3): 539-545.
[7] YAN M, LI B, ZHAO X, et al. Physicochemical properties of gelatin gels from walleye pollock (Theragra chalcogramma) skin cross-linked by gallic acid and rutin[J]. Food Hydrocolloids, 2011, 25(5): 907-914.
[8] PRODPRAN T, BENJAKUL S, PHATCHARAT S. Effect of phenolic compounds on protein cross-linking and properties of film from fish myofibrillar protein[J]. International Journal of Biological Macromolecules, 2012, 51(5): 774-782.
[9] 赵玉红, 翟亚楠, 王振宇.樟子松树皮中松多酚的提取工艺研究及提取方法比较[J].食品工业科技. 2013, 34(4): 304-309. [10] ZHAO Y H, ZHAI Y N, WANG Z Y. Extraction of polyphenlols from Pinus sylvestris L. and comparison of extraction method[J]. Science and Technology of Food Industry, 2013, 34(4): 304-309.
[11] 王洁. 多酚-蛋白质相互作用的影响因素及其功能特性研究进展[J]. 河南工业大学学报, 2012,33(3): 91-95. [12] WANG J. Progress on factors influencing polyphenol-protein interaction and functional characteristics thereof [J]. Journal of Henan University of Technology, 2012,33(3): 91-95.
[13] 李楠, 廖蓉苏, 李斌.有机化学[M]. 北京:中国农业大学出版社, 2010. [14] LI N, LIAO R S, LI B.Organic chemistry [M]. Beijing: China Agricultural University Press, 2010.
[15] LIU Y Y, ZENG X A, CHEN X D.Effects of pulsed electric fields and heat treatments on SPI structure analyzed by FTIR[J].Spectroscopy and Spectral Analysis, 2010,30(9):2340-2344.
[16] KIMY S, SHIN D H. Volatile components and antibacterial effects of pine needle (Pinus densiflora S. and Z.) extracts[J]. Food Microbiology, 2005,22:37-45.
[17] 汪立君, 李里特, 张晓峰, 等. 利用DSC对大豆蛋白质热变性的研究[J]. 中国农业大学学报, 2001, 6(6): 93-96. [18] WANG L J, LI L T, ZHANG X F, et al. Study on soybean protein heating denaturation by DSC[J]. Journal of China Agricultural University, 2001, 6(6): 93-96.
[19] NATER U M, ROHLEDER N, SCHLOTZ W, et a1.Determinants of the diurnal course of salivary alpha-amylase [J]. Psychoneuroendocrinology, 2007, 32(4):392-401.
[20] HASNI I, BOURASSA P, HAMDANI S, et al. Interaction of milk -and -caseins with tea polyphenol[J]. Food Chem,2011, 126:630-639.
[21] STRAUSS G, GIBSON S M. Plant phenolics as cross-linkers of gelatin gels and gelatin-based coacervates for use as food ingredients[J]. Food Hydrocolloids, 2004, 18(1): 81-89.
[22] RAWEL H M, CZAJKA D, ROHN S, et al. Interactions of different phenolic acids and flavonoids with soy proteins[J]. International Journal of Biological Macromolecules, 2002, 30(3-4): 137-150.
-
期刊类型引用(6)
1. 赵尧,付伟莲,关惠元. T型圆竹家具构件力学性能研究. 林产工业. 2024(10): 42-46 . 百度学术
2. 朱旭,吴新凤,郝景新,徐大鹏. 无框瓦楞夹芯板极限抗拔力及家具角部结合性能的研究. 林产工业. 2024(11): 20-25 . 百度学术
3. 马青原,王华. 板式家具五金件的发展与应用. 家具. 2023(04): 7-10+6 . 百度学术
4. 陈炳睿,胡文刚. 一种可拆装式椭圆榫节点的设计与性能分析. 木材科学与技术. 2022(02): 65-70+86 . 百度学术
5. 胡强利,纪佳俊,冉雪蕾,王梦蕾. 杨木和辐射松树脂浸渍材金属空套螺母抗拔力研究. 中国人造板. 2022(06): 16-20 . 百度学术
6. 胡文刚,白珏,关惠元. 一种速生材榫接合节点增强方法. 北京林业大学学报. 2017(04): 101-107 . 本站查看
其他类型引用(10)
计量
- 文章访问数: 1879
- HTML全文浏览量: 139
- PDF下载量: 51
- 被引次数: 16