Laser cutting preparation technology of solid wood parquet laminate flooring
-
摘要: 为确定激光切割拼花实木复合地板的优化工艺参数,采用正交试验法,以树种、焦距、切割速度、光强和切割角度为因素设计试验方案,以缝宽、缝深、烧蚀程度为评价指标,采用体视显微镜检测试验结果。结果表明:激光切割对缝宽影响的因素主次为焦距>切割角度>切割速度>树种>光强,最优工艺是A4B4C5D1E1,焦距对缝宽影响显著;对烧蚀程度影响的因素主次为焦距>切割速度>切割角度>树种>光强,最优工艺是A1B1C2D5E4,焦距对烧蚀程度影响显著;对缝深影响的因素主次为切割速度>树种>焦距>光强>切割角度,最优工艺是A5B4C1D5E5,由于各种因素有交互作用,造成没有对缝深影响显著的因素。柞木表板激光切割参数为焦距6.0mm、切割速度30mm/s、光强75~80cd,水曲柳表板的激光切割参数为焦距6.0~7.5mm、切割速度30~40mm/s、光强40~60cd。采用合理的切割参数可以获得较好的切割质量,减少甚至无需遮盖烧蚀程度、处理拼装离缝等后续的加工工艺,即满足地板拼花的需要。Abstract: This study adopted orthogonal experiment to confirm the optimum technological parameters of laser cutting of solid wood parquet laminate flooring. We took tree species, focal distance, cutting speed, light intensity and cutting angle as design factors of the scheme and seam width, seam depth and ablation degree as evaluation indexes, the stereomicroscope was used to test the result. The result showed that influencing factors on the seam width from strong to weak followed the order of focal distance > cutting angle > cutting speed > tree species > light intensity, and the optimum conditions were A4B4C5D1E1, in which focal distance had a great effect on seam width. The factors influencing ablation degree were ranked from high to low as focal distance > cutting speed > cutting angle > tree species > light intensity, and the optimum conditions were A1B1C2D5E4, in which focal distance had a great influence on ablation degree. The factors impacting seam depth were ranked from strong to weak as cutting speed > tree species > focal distance > light intensity > cutting angle, and the optimum conditions were A5B4C1D5E5. Because of interaction of various factors, there was no remarkable influencing factor to seam depth. Laser cutting parameters of oak face veneer were: focal distance 6.0mm, cutting speed 30mm/s, and light intensity 75-80cd. Laser cutting parameters of Fraxinus mandschurica face veneer were focal distance 6.0-7.5mm, cutting speed 30-40mm/s, and light intensity 40-60cd. Reasonable use of cutting parameters may acquire good cutting quality, reduce or have no need of subsequent processing crafts so as to fulfill the demands of parquet flooring such as covering ablation degree and handling the gaps.
-
Keywords:
- face veneer /
- laser processing /
- seam depth /
- seam width /
- ablation degree
-
近些年来随着云南省大面积种植核桃(Juglans regia),核桃产业得到了快速发展,为增加人们收入、繁荣地方经济发挥了重要作用[1]。但是,核桃炭疽病(Colletotrichum gloeosporioides)在云南省各地发生越来越严重,已成为制约当地核桃产业发展的重要限制因子,在严重发病年份病株率高达90%,造成落叶现象严重。随着绿色食品理念不断深入人心,促使人们探寻一种对人类和环境无害并具有良好防治效果的新防治策略[2]。作者通过对核桃植株根际土壤微生物的筛选,获得了两株对核桃炭疽病菌具有良好抑菌效果的菌株,即钩状木霉(Trichoderma hamatum)YB-4-15[3]和枯草芽孢杆菌(Bacillus subtilis)yb33[4]。为了更好地推广上述生防菌株,更好地防治核桃炭疽病菌,从切断核桃炭疽病菌病害循环的某一环入手,这两种生防菌株在核桃根际土壤中能否定殖以及定殖情况如何将是影响它们生防作用的重要因子,为此,本文献开展了这两株生防菌在核桃根际土壤中定殖试验研究。
目前,对于植物病害生防菌的研究更多集中在菌株筛选[5]、鉴定及初期应用试验等方面[2],而关于生防菌定殖方法的研究主要采用天然抗生素抗性标记、外源基因标记、DNA和RNA探针技术以及免疫学方法等[6-7]。有些学者研究了生防菌在植物(核桃、辣椒、西瓜)根际中的土壤定殖情况[8-10]。其中,DNA探针法具有较高灵敏度,不但可以检测活的微生物细胞,还可以检测死的微生物细胞[6]。应用免疫学方法可以较好地开展对于微生物与植物间互作的研究,以及用于检测土壤微生物定殖能力[7]。有关标记基因的种类主要有选择基因和报告基因[6]。尽管如此,在微生物分子生态学研究中,应用最多的标记基因主要为抗生素标记、生化显色标记基因、生物发光基因等[11]。研究细菌在植株体内的定殖,最常用的是单一抗生素标记法[12-13]。显然,上述不同标记各有优缺点,主要表现在经济性(时间及费用)、灵敏性(灵敏与迟钝)、操作步骤复杂性(简单与复杂)等方面。本研究采用经济、易操作的抗生素标记方法,对上述两株生防菌开展了核桃根际土壤中定殖的研究工作,以期明确二者在土壤中的适应性,为田间推广应用提供理论依据。
1. 材料与方法
1.1 试验材料
供试菌株:生防菌株钩状木霉YB-4-15和枯草芽孢杆菌yb33为西南林业大学植物病理学实验室分离和筛选获得。
供试土壤:试验选取云南省大理州漾濞县光明村核桃树根际土壤和西南林业大学老校区校园(位于云南省昆明市盘龙区300号)内桂花(Osmamthus fragrans)、香樟(Cinnamomum camphora)、石楠(Photinia serratifolia)等植物的根际土壤作为对比研究对象。在各样地分别选取3个样点进行土壤样品采集,将在同一个样地多点采集的土壤混合、过筛。去除表层土,取深度为5 ~ 20 cm的根际土样,装袋做好标记,带回实验室自然晾干,于4 ℃冰箱保存备用。
供试培养基:马铃薯葡萄糖琼脂培养基(PDA)和肉汤蛋白胨固体培养基(NA)、生防菌固体培养基(NYDA)及生防菌液体培养基(NYD)[14]。
1.2 钩状木霉在核桃根际土壤中的定殖力测定
将核桃根际土壤风干后经高温灭菌作为后续试验的无菌土。每份取200 g无菌土放入一次性育苗袋(直径9.5 cm × 高15 cm)中,然后向土壤中浇灌钩状木霉的孢子悬浮液20 mL(孢子数量:3.3 × 104个/μL),搅拌均匀,设置3次重复,置于室温条件下,此后每隔6 d进行定期取样。对于所取土样,采用土壤稀释法涂布平板(PDA培养基,稀释倍数为104),在光照培养箱中28 ℃恒温培养5 ~ 7 d后,记录不同培养基上的菌落数量。同样,选择未经灭菌的核桃根际土壤样品,每份取200 g样土放于一次性育苗袋中,其他步骤同上。
1.3 钩状木霉抗生素适宜含量的确定
首先,采用血球计数板法配制不同孢子含量的钩状木霉孢子悬浮液,取其100 μL均匀涂布到含有不同质量浓度(50、100、150、200、250、300 μg/mL)潮霉素B的PDA平板(9 cm)上,以不含潮霉素B的PDA平板作为对照,在28 ℃光照培养箱中培养4 d,确定钩状木霉对于抗生素耐受最高质量浓度。试验重复3次。
1.4 枯草芽孢杆菌yb33抗性标记菌株获取
将枯草芽孢杆菌yb33在NA培养基上划线活化,将单菌落转接至含有0.5 μg/mL质量浓度利福平的NYDA平板上30 ℃过夜培养,再用灭菌牙签挑单菌落接入含有0.5 μg/mL质量浓度利福平的5 mL的NYD液体培养基试管中,在温度30 ℃、转速150 r/min的黑暗条件下振荡培养过夜。其后,按照含0.5、1、2、4、8、16、32、64、128、256、300 μg/mL不同质量浓度利福平的NYDA培养基中采取逐级提高质量浓度的方法诱导培养,获得用于后续抗利福平的标记菌株yb33-Rif。同时,将yb33-Rif菌株分别在不含利福平的NYD培养基和NYDA平板上交替培养2代,再回接到含利福平300 μg/mL的NYD培养基中进行检测,以证实菌株抗性的遗传稳定性[12]。
1.5 菌株yb33-Rif菌悬液制备及在土壤中定殖动态研究
将抗利福平标记菌株yb33-Rif接种在不含利福平的NYD培养基中,在温度30 ℃、转速150 r/min的黑暗条件下振荡培养48 h。采用血球计数板法测定细菌含量。向200 g无菌土中浇灌20 mL抗利福平标记菌株yb33-Rif搅拌均匀,设3次重复。置于室温条件下。此后,每周定期取样,采用土壤稀释法涂布在含利福平300 μg/mL的NYDA培养基上,在28 ℃的光照培养箱中恒温培养2 ~ 4 d后,记录不同培养基上的菌落数。同样,选择核桃根际土壤样土(未灭菌),每份取200 g样土放于一次性育苗袋中,其他步骤同上。
1.6 钩状木霉和菌株yb33-Rif在不同土壤中的定殖能力测定
取风干后并经高温灭菌的核桃、香樟、桂花、石楠的根际土壤,每份土取100 g于大塑料杯中,用20 mL孢子含量7.6 × 106个/μL的钩状木霉孢子悬浮液浇灌4种土壤并搅拌均匀。同样,选取上述4种植物根际土壤(未灭菌),每份土壤取200 g于大塑料杯中,用40 mL孢子含量为3 × 107个/μL的yb33-Rif菌悬液浇灌4种土壤并搅拌均匀。此后于第1、3、7天分别进行取样,测定定殖菌落数,统计方法同上。
1.7 数据分析
采用SPSS 25.0统计软件对获得的无菌土与样土之间的菌量数据进行独立性t检验,同时,以核桃根际土壤中菌量数据为对照,对比不同时间香樟、桂花、石楠根际土壤中菌量数据进行独立性t检验,明确上述不同处理之间的方差显著性。
2. 结果与分析
2.1 钩状木霉耐抗生素适宜含量的确定
采用血球计数板法计数配制孢子含量为3.3 × 104个/μL的钩状木霉孢子悬浮液。将100 μL孢子悬浮液均匀涂布到PDA平板以及含不同质量浓度潮霉素B的PDA平板上,在28 ℃光照培养箱中培养4 d,结果显示,在无潮霉素B的平板上长出木霉菌落,在含有50、100、150、200、250、300 μg/mL等不同处理质量浓度的含潮霉素B的平板上均未见分生孢子萌发和菌落形成。
2.2 钩状木霉在核桃根际土壤中的定殖情况
将钩状木霉孢子悬浮液浇灌到经灭菌的核桃根际土壤中进行定殖能力的测定,在定殖初期出现了较快的增长,从初始菌量2.67 × 104 cfu/g(6 d)增加到3.00 × 104 cfu/g(12 d),在18 d时回落到2.00 × 104 cfu/g含量,之后其含量一直处于不断增长的状态(图1)。该试验结果表明,钩状木霉可以较好地在不含有其他微生物的核桃根际土壤中成功定殖,具有较好的环境适应能力,并不断繁殖增长。同样,就核桃根际土壤(未经灭菌)而言,由于该菌受到核桃根际土壤微生物的影响,其在不同时间取样分析的土壤中的定殖菌落数量均低于无菌土。该菌定殖数量最小的时间出现在6 d,测定的木霉菌数量为0.67 × 104 cfu/g,定殖数量最大时间点出现在24 d,其木霉菌数量为3.33 × 104 cfu/g(图1)。统计结果发现,在6、12、18、24、30 d上述不同处理间莱文(Levene)方差等同性检验显著性数值分别为0.279、0.692、0.692、0.205、0.561,与显著水平0.05相比,两组数据的方差无显著差异,可以认为两个独立样本的方差一致,在满足方差齐性的条件下,进一步分析发现上述不同处理时间均值显著性数值(假定等方差)分别为0.219、0.279、0.643、0.643、0.003,上述结果表明自钩状木霉孢子浇灌到无菌土及样土等不同土壤中,前24 d不同处理之间菌量并不存在显著性差异,而在30 d无菌土和样土之间菌量存在着显著性差异。试验结果表明,钩状木霉菌在无菌土壤中具有较好的环境适应能力,而且呈现出随时间的增加菌体繁殖不断增加的趋势。在未经灭菌的核桃根际土壤中,钩状木霉在接种初期(6 d)由于受到土壤中微生物的影响,其菌体繁殖数量有所下降,但在适应环境后呈现出菌体繁殖数量不断增加的趋势,表现出较好的定殖能力。
2.3 枯草芽孢杆菌抗利福平菌株筛选
试验结果表明,枯草芽孢杆菌yb33悬液在含有4、16、128、256、300 μg/mL等不同质量浓度利福平的NYDA平板上,均能生长(图2)。
图 2 枯草芽孢杆菌在含不同浓度利福平的NYDA平板生长情况A. 不含利福平的NYDA平板;B ~ F. 分别为含4、16、128、256、300 μg/mL利福平的NYDA平板。A, NYDA plate without rifampicin; B−F, NYDA plate containing 4, 16, 128, 256, 300 μg/mL of rifampicin.Figure 2. Growth of Bacillus subtilis yb33 on NYDA medium containing various mass concentrations of rifampicin抗性菌株yb33-Rif在未经灭菌土、灭菌土中定殖试验研究结果表明,在无菌土中定殖菌体数量最多时为1.08 × 108 cfu/g(18 d),最少时为7.07 × 106 cfu/g(24 d)。而在未经灭菌的土壤中,菌株yb33-Rif定殖菌体数量最多时为7.53 × 106 cfu/g(6 d),最少时为1.03 × 106 cfu/g(24 d)(图3)。统计结果发现,在6、12、18、24、30 d上述不同处理间Levene方差等同性检验显著性数值分别为0.034、0.018、0.017、0.021、0.021,显然小于显著水平0.05,两组数据的方差具有较为显著差异,不同处理时间均值显著性数值(假定等方差)分别为0.341、0.362、0.273、0.283、0.218,上述结果表明自枯草芽孢杆菌浇灌到无菌土及样土等不同土壤中,不同处理之间菌量存在着显著性差异。结果表明,菌株yb33-Rif在无菌土中定殖菌体数量表现出先升高再降低并趋于稳定的趋势,而在未经灭菌的自然土壤中菌体定殖数量呈现出随时间推移而降低的趋势,在18 d后在土壤中的含菌量出现波动,与在无菌土壤中木霉菌数量相比,其在土壤中的定殖能力较弱。
2.4 钩状木霉与枯草芽孢杆菌在其他植物根际土壤中的定殖能力
将钩状木霉和yb33-Rif菌悬液浇灌在核桃、桂花、香樟及石楠根际土中,菌体数量在1 d(初期)均未出现明显的变化情况;但在3 d(中期)后核桃根际土中定殖的菌体数量均高于其他植物(图4)。统计结果发现,就钩状木霉菌悬液浇灌而言,以核桃作为对照,在第1 天桂花、香樟以及石楠等不同处理间Levene方差等同性检验显著性数值分别为0.116、0.492、0.492,第3天分别为0.219、0.422、0.670,第7天分别为0.047、0.275、0.145,仅有桂花与核桃之间在第7 天存在显著差异,其他两组数据的方差不具有显著差异。此外,就枯草芽孢杆菌浇灌而言,以核桃作为对照,在第1 天桂花、香樟以及石楠等不同处理间Levene方差等同性检验显著性数值分别为0.626、0.150、0.061,第3 天分别为0.862、0.583、0.133,第7 天分别为0.904、0.220、0.155,显然上述值均大于显著水平0.05,两组数据的方差不具有显著差异。因此,尽管两个供试菌株在桂花、香樟以及石楠等植物根际土壤中的定殖菌体数量在一定程度上低于核桃根际土壤,但上述菌株依然表现出较好的定殖能力。
3. 结论与讨论
本研究通过对钩状木霉YB-4-15和枯草芽孢杆菌yb33在核桃根际土壤中的定殖能力测定,明确了这两个菌株在无菌土和样土中均具有较好的定殖能力。在长达一个月的定殖时间中,前者定殖最大量为5 × 104 cfu/g,最小为2 × 104 cfu/g;后者定殖最大量为1.08 × 108 cfu/g,最小为1.03 × 106 cfu/g。同时,选择香樟、石楠以及桂花等不同植物根际土壤开展上述菌株的定殖能力分析,结果表明上述菌株具有较好的定殖能力。
研究中发现,钩状木霉YB-4-15在施用30 d后出现菌落数量下降的趋势,可能与钩状木霉施入土壤后需要适应新的环境有关。同时,根据无菌土的试验结果钩状木霉出现短暂的菌落数量下降后,经过6 d时间,会产生进一步的增长态势,表明木霉菌已适应土壤环境。
土壤微生物是维持土壤生态及其质量的重要组成部分,其多样性水平能敏感地反映出土壤健康水平[15-17]。有较多研究发现,在人为控制条件下,应用生防菌往往可以取得较好的生防效果[18-19]。然而,在自然条件下,由于土壤中存在着大量各种微生物,特别是来自于土著微生物的竞争或其他环境因子的影响,外部添加生防菌的生长往往受到抑制,致使许多在室内试验中表现较好的生防菌,在田间试验却表现不理想等诸多问题[2]。生防菌作为外源微生物,将其大量引入土壤,最大的潜在影响则是生防菌对土壤小生境原有微生物的取代作用,从而使土壤原有稳定的生态平衡被打破,甚至产生系统多样性和功能等下降[20]。同时,钩状木霉YB-4-15和枯草芽孢杆菌yb33在核桃根际土壤中定殖后,尚缺乏对核桃炭疽病菌生长发育的抑制测定工作,尚不清楚该定殖情况是否满足未来生物防治炭疽病菌的需要,均有待进一步开展研究。本研究所选用的两株生防菌来自于核桃种植区域核桃根际土壤,因此,二者对当地核桃根际土壤具有较好的适应性,可通过驯化试验提高其生防效果。由于在室内生防菌的定殖环境与田间实际土壤、气候等环境条件均存在着一定的差异,上述菌株在田间的实际定殖能力有待于今后进一步明确。
-
[1] ZHOU G W. Parquet:market outlook[J]. International Wood Industry, 2013 (1):1-5.
[1] 周冠武.拼花地板市场展望[J].国际木业, 2013(1):1-5. [2] GOODELL B,KAMKE F A,LIU J. Laser incising spruce lumber for improved penetration[J].Forest Products Journal, 1991 (1):15-20.
[2] LÜ B. Industry status and development tendency of wood-based flooring in China[J]. China Wood-Based Panels, 2001(2):40-60.
[3] RISHOLM-SUNDMAN M, WALLIN N. Comparison of different laboratory methods for determining the formaldehyde emission from three-layer parquet floors[J]. Holz als Roh - und Werkstoff, 1999, 57 (5):319-324.
[3] LIU X G. Parquet color floor construction technology[J]. New Agricultural Scientech, 2005(1):21-23.
[4] ZHANG J. The construction of constructional engineering wood floor[J]. Non-State Running Science & Technology Enterprises, 2012(3):10-15.
[4] 吕斌.我国木地板行业现状及其发展趋势[J].人造板通讯, 2001(2):40-60. [5] LIU L. Flowery life of floor[J]. Building Material and Decoration Information,2010(9):2-4.
[5] 刘新刚.拼花彩色地面施工技术[J].农业新科技, 2005(1):21-23. [6] 张建.建筑工程木地板的施工[J].民营科技, 2012(3):10-15. [6] PIAO Y S. Special cutting and machining of wood[M].Harbin:Northeast Forestry University Press, 1990:50-100.
[7] 刘磊.地板上的花样年华[J].建材与装修情报,2010(9):2-4. [7] MENG L P, WANG C M, LIU Y N. Production technology and key points for three-layer parquet[J]. China Wood-Based Panels, 2011(11):16-23.
[8] ZHAO H. Causes and process improvement of layer crack on parquet[D]. Nanjing: Nanjing Forestry University, 2007:20-26.
[8] 朴永守.木材特种切削加工[M].哈尔滨:东北林业大学出版社,1990:50-100. [9] 孟黎鹏,王春明,刘一楠.三层实木复合地板的生产工艺及技术要点[J].中国人造板,2011(11):16-23. [9] SI J J. Laser cutting stripe formation mechanism[D]. Qinhuangdao: Yanshan University, 2004:1-7.
[10] TANG X H, JIANG X B, MA Y. Research on laser ablation prototyping technique method of wood[J]. Forestry Equipment & Woodingworking Machinery,2002,30(7):11-12.
[10] 赵祜.实木复合地板面层裂纹产生原因及工艺改进[D].南京:南京林业大学,2007:20-26. [11] YANG W. A study of high precision laser cutting theory and applied technology[D]. Yantai: Yantai University,2009:1-13.
[11] 司俊杰.激光切割条纹形成机理[D].秦皇岛:燕山大学,2004:1-7. [12] DENG S S. The upsurge and soar of laser processing industry in China[J]. Advanced Materials Industry,2008(5):44-47.
[12] 汤晓华,江新波,马岩.木材的激光去除成型技术方法研究[J].林业设备与木工机械,2002,30(7):11-12. [13] VOSSEN G, HERMANNS T, SCHÜTTLER J. Analysis and optimal control for free melt flow boundaries in laser cutting with distributed radiation[J]. Journal of Applied Mathematics and Mechanics, 2015, 95(3): 297-316.
[13] DENG H L. Strategy of development on industrialization of powerful CO 2 laser material processing in China[J]. Laser & Infrared, 1990,20(6):9-13.
[14] SONG Z D. Research on image processing for lasser carving system of transmitting emerge fiber[D]. Qinhuangdao: Yanshan University, 2009:5-7.
[14] 杨伟.高精密激光切割的理论及应用技术研究[D].烟台:烟台大学,2009:1-13. [15] ZHANG Y P. A research on wood production criterion system in China[D]. Beijing: China Forestry Science Research Institute, 2012:6-14.
[15] 邓树森.我国激光加工产业的兴起与腾飞[J].新材料产业,2008(5):44-47. [16] 邓鸿林.发展我国CO 2 激光加工产业的战略探讨[J].激光与红外线,1990,20(6):9-13. [16] WANG Y L. The latest application area of laser processing[J]. Applied Laser,2005,25(5):329-332.
[17] CHEN J. Solid wood parquet flooring[J]. Modern Decoration Home, 2011(3):154-155.
[17] 宋振电.传能光纤激光雕刻系统图像处理的研究[D].秦皇岛:燕山大学,2009:5-7. [18] 张玉萍.我国木制品标准体系的研究[D].北京:中国林业科学研究院,2012:6-14. [18] LIU M L, HUANG R, LIANG Z K, et al. A study on archaize effect on the carbonization process of three-layer parquet face veneer[J]. Wood Processing Machinery, 2013(6):26-28,15.
[19] 王又良.激光加工的最新应用领域[J].应用激光,2005,25(5):329-332. [20] LIU P X, LIU H Q, ZHANG Y S. A new thin sheet heat source model for active gas melt laser cutting[J]. The International Journal of Advanced Manufacturing Technology, 2015, (77):1475-1481.
[21] 陈珺.全实木拼花地板[J].现代装饰(家居),2011(3):154-155. [22] 刘明利,黄茹,梁占坤,等.炭化表板仿古实木复合地板工艺研究[J].木材加工机械,2013(6):26-28,15. -
期刊类型引用(5)
1. 侯变变,梁巧兰,魏列新,陈应娥,芮静. 深绿木霉T2菌株土壤定殖条件及其对苜蓿生长的影响. 中国草地学报. 2025(02): 115-123 . 百度学术
2. 徐皓,彭雪,郭二丹,曾海涛. 芽孢杆菌对延胡索生长及质量标志物的影响. 时珍国医国药. 2024(04): 985-988 . 百度学术
3. 邱月. 枯草芽孢杆菌在现代农业中的应用. 园艺与种苗. 2022(07): 81-85 . 百度学术
4. 陈逢玲,孙卓,林红梅,杨利民. 关防风根腐病拮抗细菌筛选与鉴定. 微生物学通报. 2022(08): 3192-3204 . 百度学术
5. 曹阳,孙平平,刘彬. 一株枯草芽孢杆菌发酵培养基和培养条件的优化. 绿色科技. 2022(24): 237-240+257 . 百度学术
其他类型引用(7)
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量:
- 被引次数: 12