Small RNA sequencing and target gene prediction in Larix olgensis.
-
摘要: miRNA是近年来新发现的一种比较特殊的具有高度保守的小RNA,其在基因调控网络中扮演着重要的角色。本文借助Illumia测序平台,经过Solexa测序分析,对长白落叶松的miRNA进行了分析,最终筛选出了15 294 797条clean reads。比对结果显示,除去核糖体RNA(rRNA)2 991 972条、转运RNA(tRNA)65 264条、核内小RNA(snRNA)1 670条、核仁小RNA(snoRNA)467条等ncRNA以及重复序列6 421条,共获得未获得注释的miRNA 12 229 003条,占总注释小RNA的79.96%。利用miRDeep2对未注释的小RNA进行miRNA的筛选,共得到78个新发现的miRNA,分别隶属于miR164、miR166、miR160、miR950、miR396家族。通过进一步对靶基因的注释分析共得到333个与其相对应的靶基因;其功能包括转录因子类,未知功能蛋白,离子结合蛋白,延长因子,信号转导,细胞壁或细胞膜的生物合成等调控植物生长发育过程。Abstract: miRNA is a relatively special and highly conserved RNA, which plays an important role in gene regulation network. In this study, with the help of Illumia sequencing platform and the Solexa sequencing analysis of miRNA in Larix olgensis, we ultimately selected 15 294 797 clean reads, in which rRNA is 2 991 972 reads, tRNA 65 264 reads, snRNA 1 670 reads and snoRNA 467 reads, and ncRNAs and repeat sequences contain 6 421 reads. Un-annotated miRNA has 12 229 003 reads, accounting for 79.96% of the total RNA notes. The miRDeep2 was used to screen the miRNA, and 78 new miRNAs were obtained overall, which belong to the miR164, miR166, miR950, miR160, and miR396 families. Through further analysis of the target gene notes, we obtained 333 corresponding target genes, and their functions include transcription factors, unknown functional proteins, binding proteins, elongation factors, signal transduction, cell wall and cell membrane biosynthesis involved in regulation of plant growth and development process.
-
Keywords:
- sRNA /
- Larix olgensis /
- miRNA /
- target gene
-
-
[1] 罗荣.DmiR:小RNA转录组深度测序的miRNA预测[D] . 福州:福建农林大学,2011. [1] LUO R. DmiR:miRNA predict of small RNA transcriptome deep sequencing[D] . Fuzhou: Fujian Agriculature and Forestry University, 2011.
[2] WU T, ZHANG J H, HAN S Y, et al. Construction of small RNA library and characterization of miRNAs in Larix kaempferi[J] . Forest Research, 2012, 25(6): 677-684.
[2] LU S F, SUN Y H, SHI R, et al. Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis[J] . Plant Cell,2005,17(8):2186-2203.
[3] LI Y X, ZHANG H G, DENG J F, et al. Correlation among wood density, wood physical mechanics index and growth trait, and selection of elite families for production of building products in Larix olgensis[J] . Journal of Beijing Forestry University, 2012, 34(5):6-14.
[3] LU S, SUN Y, CHIANG V L. Stress-responsive microRNAs in Populus[J] . Plant J, 2008, 55(1): 131-151.
[4] CHEN J, LIN H J, PAN G T, et al.Identification of known microRNAs in root and leaf of maize by deep sequencing[J] . Hereditas, 2010, 32(11): 1175-1186.
[4] LI B, YIN W, XIA X. Identification of microRNAs and their targets from Populus euphratica[J] . Biochem Bioph Res Co, 2009, 388(2): 272-277.
[5] DUAN Z X, QIN Y R, XIA X L, et al. Overexpression of Populus euphratica peu-MIR156j gene enhancing salt tolerance in Arabidopsis thaliana[J] . Journal of Beijing Forestry University, 2011, 33(6):1-7.
[5] JIA X, REN L, CHEN Q, et al. UV-B-responsive microRNAs in Populus tremula[J] . Plant Physiol, 2009, 166(18): 2046-2057.
[6] LEE R C, FEINBAUM R L, AMBROS V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J] . Cell, 1993, 75(5): 843-854.
[6] MA C G, SUN X M. Larch genetic improvement and its future development in China[J] . World Forestry Research, 2008, 21(3): 58-63.
[7] JIA Q B, ZHANG H G, ZHANG L, et al. Selection of superior hybrid larch families and growth rhythm analysis[J] . Journal of Beijing Forestry University, 2016, 38(2):53-60.
[7] 吴涛,张俊红,韩素英,等.日本落叶松小RNA文库构建及其microRNA鉴定[J] . 林业科学研究,2012,25(6):677-684. [8] AMBROS V, LEE R C. Identification of microRNAs and other tiny noncoding RNAs by cDNA cloning[J] . Methods Mol Biol, 2004, 265: 131-158.
[9] PFEFFER S, ZAVBLAN M, GRASSER F A, et al. Identification of virus-encoded microRNAs[J] . Science, 2004, 304: 734-736.
[10] CHEN P Y, MANNINGA H, SLANCHEV K, et al. The developmental miRNA profiles of zebrafish as determined by small RNA cloning[J] . Genes Dev, 2005, 19(11): 1288-1293.
[11] MANIATAKI E, DE PLANELL SAGUER M D, MOURELATOS Z. Immunoprecipitation of microRNPs and directional cloning of microRNAs[J] . Methods Mol Biol, 2005, 309: 283-294.
[12] LU S, SUN Y H, AMERSON H, et al. MicroRNAs in loblolly pine (Pinus taeda L.) and their association with fusiform rust gall development[J] . Plant J, 2007, 51(6): 1077-1098.
[13] 李艳霞,张含国,邓继峰,等. 长白落叶松木芯基本密度与材性指标相关建筑材优良家系选择研究[J] . 北京林业大学学报, 2012,34(5):6-14. [14] CHEN X, LI Q B, WANG J, et al. Identification and characterization of novel amphioxus microRNAs by Solexa sequencing[J] . Genome Biol, 2009, 10(7): R78.
[15] 陈洁,林海建,潘光堂,等.利用深度测序技术检测玉米根系和叶片中已知的microRNAs[J] . 遗传,2010,32(11):1175-1186. [16] LANGMEAD B, TRAPNELL C, POP M, et al. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome[J] . Genome Biology, 2009, 10(3):1-10.
[17] DOLGOSHEINA E V, MORIN R D, AKSAY G, et al. Conifers have a unique small RNA silencing signature[J] . Ran-a Publication of the Ran Society, 2008, 14(8): 1508-1515.
[18] ALLEN E, XIE Z X, GUSTAFSON A M, et al. microRNA-directed phasing during trans-acting siRNA biogenesis in plants[J] . Cell, 2005, 121(2): 207-221.
[19] DENG Y Y, LI J Q, WU S F, et al. Integrated nr database in protein annotation system and its localization[J] . Computer Engineering, 2006, 32(5): 71-72.
[20] APWEILER R, BAIROCH A, WU C H, et al. UniProt: the universal protein knowledgebase[J] . Nucleic Acids Research, 2004, 32(Database Issue): D115-D119.
[21] ASHBURNER M, BALL C A, BLAKER J A, et al. Gene ontology: tool for the unification of biology[J] . Nat Genet, 2000,25(1): 25-29.
[22] TATUSOV R L, GALPERIN M Y, NATALE D A, et al. The COG database: a tool for genome scale analysis of protein functions and evolution[J] . Nucleic Acids Research, 2000, 28(1): 33-36.
[23] KANEHISA M, GOTO S, KAWASHIMA S, et al. The KEGG resource for deciphering the genome[J] .Nucleic Acids Research, 2004, 32:277-280.
[24] KOONIN E V, FEDOROVA N D, JACKSON J D, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes[J] . Genome Biology Italic, 2004, 5(2): 60.
[25] EDDY S R. Profile hidden Markov models [J] . Bioinformatics Italic, 1998, 14(9): 755-763.
[26] 段中鑫,覃玉蓉,夏新莉,等. 超量表达胡杨peu MIR156j增强拟南芥耐盐性[J] . 北京林业大学学报,2011,33(6):1-7. [27] QIU D, PAN X P, WILSON I W, et al. High throughput sequencing technology reveals that the taxoid elicitor methyl jasmonate regulates microRNA expression in Chinese yew (Taxus chinensis)[J] . Gene, 2009, 436(1-2): 37-44.
[28] BARAKAT A, WALL P K, DILORETO S, et al. Conservation and divergence of microRNAs in Populus[J] . BMC Genomics, 2007, 8: 481.
[29] JOSHI T, YAN Z, LIBAULT M, et al. Prediction of novel miRNAs and associated target genes in Glycine max[J] . BMC Bioinformatics, 2010, 11(Suppl.1): S14.
[30] 马常耕,孙晓梅.我国落叶松遗传改良现状及发展方向[J] . 世界林业研究,2008,21(3): 58-63. [31] 贾庆彬,张含国,张磊,等. 杂种落叶松优良家系选择与生长节律分析[J] . 北京林业大学学报, 2016,38(2):53-60. -
期刊类型引用(1)
1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 1820
- HTML全文浏览量: 143
- PDF下载量: 37
- 被引次数: 4