Influences of exogenous additives on culture of biological soil crusts
-
摘要: 生物土壤结皮(以下简称“生物结皮”)在防风固沙,改善土壤环境以及生态系统修复等方面扮演着重要的角色,目前正受到广泛关注,然而由于受到水分、养分的限制以及风蚀的影响,其发育演替和恢复仍然较为缓慢。本研究以毛乌素沙地自然发育的生物结皮为种源,采用全因子试验设计进行了室外人工培养试验,探究高吸水性树脂(SAP)、硝酸铵、葡萄糖、沙蒿胶及其交互作用对生物结皮形成发育的影响。结果显示,SAP对生物结皮的形成发育无显著性影响,硝酸铵和葡萄糖显著增加了结皮叶绿素a含量,沙蒿胶显著增加了结皮的抗压强度,低用量的沙蒿胶显著增加了结皮叶绿素a含量,高用量的沙蒿胶对结皮叶绿素a含量无显著性影响。研究结果还显示,硝酸铵、葡萄糖以及少量的沙蒿胶的混合添加极大地提高了结皮的叶绿素a含量。结果表明:外源氮、碳添加有助于生物结皮的形成发育,沙蒿胶能够提高结皮的抗蚀能力,同时加入适量的氮、碳及沙蒿胶,有利于生物结皮的快速形成。Abstract: Biological soil crusts (BSCs) have been proved to play an important role in stabilizing desert, improving soil environment and restoring ecosystem, and are attracting wide interest. However, the succession and restoration of BSCs progress slowly due to the limitation and influence of water, nutrient and wind erosion. This paper explores the effects of superabsorbent polymer (SAP), ammonium nitrate, glucose, and Artemisia sphaerocephala Krasch. gum (ASG) and their interaction on the formation and development of BSCs, using a full factorial field design. SAP did not have a significant effect on the formation and development of BSCs. Ammonium nitrate and glucose significantly increased the content of chlorophyll a in BSCs. ASG significantly enhanced compressive strength of BSCs; low dosage of ASG notably raised the content of chlorophyll a in BSCs, while high dosage had no remarkable effect on it. The results also showed that the mixture of ammonium nitrate, glucose and ASG significantly enhanced the content of chlorophyll a in BSCs. The results indicate that the exogenous addition of nitrogen and carbon can promote the formation and development of BSCs. ASG can improve the resistance of BSCs to wind erosion, and mixed addition of nitrogen, carbon and ASG are helpful to the rapid formation of BSCs.
-
-
[1] BELNAP J. The world at your feet: desert biological soil crusts[J]. Frontiers in Ecology and the Environment, 2003, 1(4): 181-189.
[1] WU Y H, GAO Q, CHENG G D. Ecological function of biological soil crusts[J]. Chinese Journal Ecology, 2002, 21(4): 41-45.
[2] WEST N E. Structure and functions of microphytic soil crusts in wildland ecosystems of arid to semi-arid regions[J]. Advances in Ecological Research, 1990, 20: 179-223.
[2] FANG S B, FENG L, LIU H J, et al. Responses of biological soil crusts (BSC) from arid-semiarid habitats and polar region to global climate change[J]. Acta Ecologica Sinica, 2008, 28(7): 3312-3321.
[3] LI X R, ZHANG Y M, ZHAO Y G. A study of biological soil crusts: recent development, trend and prospect[J]. Advances in Earth Science, 2009, 24(1): 11-24.
[3] ELDRIDGE D J, GREENE R S B. Microbiotic soil crusts-a review of their roles in soil and ecological processes in the rangelands of Australia[J]. Soil Research, 1994, 32(3): 389-415.
[4] XIAO B, ZHAO Y G, WANG H F, et al.Natural recovery of moss-dominated biological soil crusts after surface soil removal and their long-term effects on soil water conditions in a semi-arid environment[J]. Catena, 2014, 120: 1-11.
[4] WEI M S, TU C Z. Preliminary study of Artemisia sphaerocephala Krasch seed coating polysaccharide and its sand-fixing test[J]. Acta Botanica Sinica, 1980, 22(3):300-301.
[5] 吴玉环, 高谦, 程国栋. 生物土壤结皮的生态功能[J]. 生态学杂志, 2002, 21(4): 41-45. [5] WANG Z Y, LIU Z X. Properties of super water absorbent polymers and their applications in agriculture[J]. Chinese Journal of Soil Science, 2004, 35(3): 352-356.
[6] LI K Y, REN T R. Application of superabsorbent resin in agriculture[J].The Chinese Journal of Process Engineering, 2002, 2(1): 91-96.
[6] 房世波, 冯凌, 刘华杰, 等. 生物土壤结皮对全球气候变化的响应[J]. 生态学报, 2008, 28(7):3312-3321. [7] 李新荣, 张元明, 赵允格. 生物土壤结皮研究: 进展, 前沿与展望[J]. 地球科学进展, 2009, 24(1):11-24. [7] YAN Y L, YU J, WEI Z M, et al. Effects of soil properties on water absorption of super absorbent polymers[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(7):76-79.
[8] BELNAP J.Recovery rates of cryptobiotic crusts: inoculant use and assessment methods[J]. The Great Basin Naturalist, 1993, 53(1): 89-95.
[8] YIN F H, LI X L, DONG Y S, et al. Effect of elevated CO 2 on ecosystem and C-N coupling in arid and semi-arid region[J]. Advances in Earth Science, 2011, 26(2):235-244.
[9] BELNAP J, ELDRIDGE D. Disturbance and recovery of biological soil crusts[M]∥Biological soil crusts: structure, function, and management. Berlin Heidelberg: Springer, 2003: 363-383.
[9] GE H M, ZHOU X P, XIA L, et al. Effects of light and nitrogen source on the secretion of extracellular polysaccharides from Nostoc sp.[J]. Acta Hydrobiologica Sinica, 2014, 38(3):480-486.
[10] FENG W, ZHANG Y Q, WU B, et al.Influence of disturbance on soil respiration in biologically crusted soil during the dry season[J/OL]. The Scientific World Journal, 2013, 408560[2015-10-23]. http:∥dx.doi.org/ doi: 10.1155/2013/408560.doi:10.1155/2013/408560.
[10] CHEN Y Q, ZHAO Y G, RAN M Y. Influence of 4 nutrients on the development of moss crusts[J].Journal Northwest A&F University (Natural Science Edition), 2011, 39(5): 44-50.
[11] WANG W X, AN Q, WANG Y, et al. A study on cell suspension culture and flavonoids accumulation of Stellera chamaejasme [J]. Acta Prataculturae Sinica, 2010, 19(6):132-139.
[11] BOWKER M A, MAESTRE F T, ESCOLAR C. Biological crusts as a model system for examining the biodiversity-ecosystem function relationship in soils[J]. Soil Biology and Biochemistry, 2010, 42(3): 405-417.
[12] LIU D H, GU W Y, DING X L. Effects of Artemisia sphaerocephala Krasch gum on the rheological properties of dough and its application to break processing[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(Suppl.1):233-236.
[12] ZHAO Y M, ZHU Q K, LI P, et al. Effects of artificially cultivated biological soil crusts on soil nutrients and biological activities in the Loess Plateau[J]. Journal of Arid Land, 2014,6(6):742-752.
[13] WANG W B, LIU Y D, LI D H, et al.Feasibility of cyanobacterial inoculation for biological soil crusts formation in desert area[J]. Soil Biology and Biochemistry, 2009, 41(5): 926-929.
[13] YAO Z Y, HAN Z W, ZHAO A G, et al. Study on crusts shear strength and erodibility of three chemical sand stabilizers[J]. Journal of Arid Land Resources and Environment, 2009, 23(2):191-195.
[14] LAN S B, ZHANG Q Y, WU L, et al.Artificially accelerating the reversal of desertification: cyanobacterial inoculation facilitates the succession of vegetation communities[J]. Environmental Science & Technology, 2014, 48(1): 307-315.
[14] XIE Z M, LIU Y D, CHEN L Z, et al. The effects of different cultivation conditions on the biomass and exopolysaccharide production by Microcoleus vaginatus Gom.[J]. Acta Hydrobiologica Sinica, 2008, 32(2): 272-275.
[15] WU Y W, RAO B Q, WU P P, et al.Development of artificially induced biological soil crusts in fields and their effects on top soil[J]. Plant and Soil, 2013, 370: 115-124.
[16] XIAO B, WANG Q H, ZHAO Y G, et al.Artificial culture of biological soil crusts and its effects on overland flow and infiltration under simulated rainfall[J]. Applied Soil Ecology, 2011, 48(1): 11-17.
[17] BU C F, WU S F, YANG Y S, et al.Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts[J]. PLoS One, 2014, 9(3): 1-8.
[18] FENG W, ZHANG Y Q, WU B, et al.Influence of environmental factors on carbon dioxide exchange in biological soil crusts in desert areas[J]. Arid Land Research and Management, 2014, 28(2): 186-196.
[19] PARK C H, LI X R, JIA R L, et al. Effects of superabsorbent polymer on cyanobacterial biological soil crust formation in laboratory [J]. Arid Land Research and Management, 2015, 29(1): 55-71.
[20] 魏明山, 屠传忠. 沙蒿种子胶质的初步研究及固沙试验[J]. 植物学报, 1980, 22(3): 300-301. [21] XIE Z M, LIU Y D, HU C X, et al.Relationships between the biomass of algal crusts in fields and their compressive strength[J]. Soil Biology and Biochemistry, 2007, 39(2): 567-572.
[22] LAN S B, HU C X, RAO B Q, et al.Non-rainfall water sources in the topsoil and their changes during formation of man-made algal crusts at the eastern edge of Qubqi Desert, Inner Mongolia[J]. Science China Life Sciences, 2010, 53(9): 1135-1141.
[23] 王志玉, 刘作新. 高吸水树脂的性能及其在农业上的应用[J]. 土壤通报, 2004, 35(3): 352-356. [24] ZOHURIAAN M J, KABIRI K.Superabsorbent polymer materials: a review[J]. Iranian Polymer Journal, 2008, 17(6): 451-477.
[25] 李开扬, 任天瑞. 高吸水性树脂在农业中的应用[J]. 过程工程学报, 2002, 2(1): 91-96. [26] 闫永利, 于健, 魏占民, 等. 土壤特性对保水剂吸水性能的影响[J]. 农业工程学报, 2007, 23(7): 76-79. [27] 尹飞虎, 李晓兰, 董云社, 等. 干旱半干旱区CO 2 浓度升高对生态系统的影响及碳氮耦合研究进展[J]. 地球科学进展, 2011, 26(2): 235-244. [28] MAESTRE F T, MARTÍN N, DÍEZ B, et al.Watering, fertilization, and slurry inoculation promote recovery of biological crust function in degraded soils[J]. Microbial Ecology, 2006, 52(3): 365-377.
[29] SABOUR B, LOUDIKI M, VASCONCELOS V.Growth responses of Microcystis ichthyoblabe Kützing and Anabaena aphanizomenoides Forti (cyanobacteria) under different nitrogen and phosphorus conditions[J]. Chemistry and Ecology, 2009, 25(5): 337-344.
[30] 葛红梅, 周旭萍, 夏令, 等. 光强和氮源对念珠藻胞外多糖分泌的影响[J]. 水生生物学报, 2014, 38(3): 480-486. [31] 陈彦芹, 赵允格, 冉茂勇. 4种营养物质对藓结皮形成发育的影响[J]. 西北农林科技大学学报(自然科学版), 2011, 39(5): 44-50. [32] SINSABAUGH R L, BELNAP J, RUDGERS J, et al. Soil microbial responses to nitrogen addition in arid ecosystems[J]. Frontiers in Microbiology, 2015, 6:819-831.
[33] 王文星, 安琪, 汪莹, 等. 瑞香狼毒细胞悬浮培养及黄酮积累的研究[J]. 草业学报, 2010, 19(6): 132-139. [34] TAKAMI S, YASUNAGA M, TAKIO S, et al.Establishment of suspension cultures of cells from the hornwort, Anthoceros punctatus L.[J]. Journal of the Hattori Botanical Laboratory, 1988, 64:429-435.
[35] 刘敦华, 谷文英, 丁霄霖. 沙蒿胶对面团流变性质的影响及在面包加工中的应用[J]. 农业工程学报, 2009, 25(增刊1):233-236. [36] ISSA O M, DÉFARGE C, LE BISSONNAIS Y, et al. Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil[J]. Plant and Soil, 2007, 290: 209-219.
[37] GUO Q B, CUI S W, WANG Q, et al. Extraction, fractionation and physicochemical characterization of water-soluble polysaccharides from Artemisia sphaerocephala Krasch seed[J]. Carbohydrate Polymers, 2011, 86(2): 831-836.
[38] CHEN J, LI J, SUN A D, et al.Supercritical CO 2 extraction and pre-column derivatization of polysaccharides from Artemisia sphaerocephala Krasch. seeds via gas chromatography[J]. Industrial Crops and Products, 2014, 60: 138-143.
[39] YANG X J, BASKIN C C, BASKIN J M, et al. Degradation of seed mucilage by soil microflora promotes early seedling growth of a desert sand dune plant[J]. Plant, Cell & Environment, 2012, 35(5): 872-883.
[40] 姚正毅, 韩致文, 赵爱国, 等. 化学固沙结层的力学强度与抗风蚀能力关系[J]. 干旱区资源与环境, 2009,23(2): 191-195. [41] 谢作明, 刘永定, 陈兰洲, 等. 不同培养条件对具鞘微鞘藻生物量和多糖产量的影响[J]. 水生生物学报, 2008, 32(2): 272-275. -
期刊类型引用(24)
1. 张秀芸,伍文慧,梁英梅. 落叶松枯梢病在中国的适生性. 生态学报. 2024(07): 3027-3037 . 百度学术
2. 葛婉婷,刘莹,赵智佳,张珅,李洁,杨桂娟,曲冠证,王军辉,麻文俊. 不同气候情景下黄心梓木在我国的潜在适生区预测. 林业科学. 2024(11): 63-74 . 百度学术
3. 汤思琦,武扬,梁定东,郭恺. 未来气候变化下栎树猝死病菌在中国的适生性分析. 生态学报. 2023(01): 388-397 . 百度学术
4. 刘璐璐,赵亮,蔺诗颖,冯建龙. 基于MaxEnt和GARP的阿蒙森海域南极磷虾(EUPHAUSIA SUPERBA)的分布区预测. 海洋与湖沼. 2023(02): 399-411 . 百度学术
5. 唐雨薇,张晓龙,张雪云,吕佩锋,罗乐. 基于GIS与AHP分析法的单叶蔷薇生态适宜性评价. 绿色科技. 2023(13): 205-208+213 . 百度学术
6. 王广平,李成,王书砚,刘超,杨君珑. 宁夏罗山青海云杉林空间分布特征研究. 农业科学研究. 2023(03): 10-15+23 . 百度学术
7. 张惠惠,孟祥霄,林余霖,陈士林,黄林芳. 基于GMPGIS系统和MaxEnt模型预测人参全球潜在生长区域. 中国中药杂志. 2023(18): 4959-4966 . 百度学术
8. 李盼畔,何旭诺,吴海荣,陈萍,刘明航,武目涛,王亚锋. 多年生豚草在中国的潜在分布预测. 植物检疫. 2022(04): 57-62 . 百度学术
9. 李盼畔,何旭诺,左然玲,吕文刚,吴海荣. 4种蒺藜草属杂草在中国的潜在适生性预测. 杂草学报. 2022(02): 15-23 . 百度学术
10. 林姗,陆兴利,王茹琳,李庆,王明田,郭翔,文刚. RCP8.5情景下气候变化对四川省猕猴桃溃疡病病菌地理分布的影响. 江苏农业科学. 2020(03): 124-129 . 百度学术
11. 王华辰,朱弘,李涌福,伊贤贵,李蒙,南程慧,王贤荣. 中国特有植物雪落樱桃潜在分布及其生态特征. 热带亚热带植物学报. 2020(02): 136-144 . 百度学术
12. 赵金鹏,王茹琳,刘原,陆兴利,王庆,郭翔,文刚,李庆. RCP4.5情景下四川省猕猴桃溃疡病菌适生性分析. 沙漠与绿洲气象. 2020(02): 137-143 . 百度学术
13. 段义忠,王佳豪,王驰,王海涛,杜忠毓. 未来气候变化下西北干旱区4种扁桃亚属植物潜在适生区分析. 生态学杂志. 2020(07): 2193-2204 . 百度学术
14. 陈爱莉,赵志华,龚伟,孔芬,张克亮. 气候变化背景下紫楠在中国的适宜分布区模拟. 热带亚热带植物学报. 2020(05): 435-444 . 百度学术
15. 文雪梅,艾科拜尔·木哈塔尔,木巴来克·阿布都许科尔,阿不都拉·阿巴斯. 基于MaxEnt模型的新疆微孢衣属地衣生境适宜性评价. 武汉大学学报(理学版). 2019(01): 77-84 . 百度学术
16. 常红,刘彤,王大伟,纪孝儒. 气候变化下中国西北干旱区梭梭(Haloxylon ammodendron)潜在分布. 中国沙漠. 2019(01): 110-118 . 百度学术
17. 吕汝丹,何健,刘慧杰,姚敏,程瑾,谢磊. 羽叶铁线莲的分布区与生态位模型分析. 北京林业大学学报. 2019(02): 70-79 . 本站查看
18. 陆兴利,罗伟,李庆,林姗,王茹琳,游超,郭翔,王明田. RCP2.6情景下四川省猕猴桃溃疡病菌潜在分布预测. 湖北农业科学. 2019(18): 49-54 . 百度学术
19. 王蕾,罗磊,刘平,侯晓臣,邱琴,高亚琪,李曦光. 基于MaxEnt模型分析新疆特色林果区春尺蠖发生风险. 新疆农业科学. 2019(09): 1691-1700 . 百度学术
20. 王茹琳,郭翔,李庆,王明田,游超. 四川省猕猴桃溃疡病潜在分布预测及适生区域划分. 应用生态学报. 2019(12): 4222-4230 . 百度学术
21. 赵健,李志鹏,张华纬,陈宏,翁启勇. 基于MaxEnt模型和GIS技术的烟粉虱适生区预测. 植物保护学报. 2019(06): 1292-1300 . 百度学术
22. 王奕晨,郑鹏,潘文斌. 运用GARP生态位模型预测福寿螺在中国的潜在适生区. 福建农林大学学报(自然科学版). 2018(01): 21-25 . 百度学术
23. 邱靖,朱弘,陈昕,汤庚国. 基于DIVA-GIS的水榆花楸适生区模拟及生态特征. 北京林业大学学报. 2018(09): 25-32 . 本站查看
24. 王野,陈磊,白云,张俊娥,刘红霞,田呈明. 云杉矮槲寄生遗传多样性的ISSR分析. 西北植物学报. 2017(11): 2153-2162 . 百度学术
其他类型引用(20)
计量
- 文章访问数: 1867
- HTML全文浏览量: 161
- PDF下载量: 25
- 被引次数: 44