Soil organic carbon density as affected by topography and physical protection factors in the secondary forest area of Zhangguangcai Mountains, northeast China
-
摘要: 在张广才岭西部典型低山丘陵次生林区,按坡位、坡向差异对等设置36块样地,采集1 m深度剖面内不同发生层土样,研究了地形因子(坡位、坡向、坡度)对土壤有机碳含量、有机碳密度的影响,以及土壤有机碳与物理保护因子(黏粒、团聚体)的关系,并借助逐步回归分析量化各地形因子对土壤有机碳密度变异的相对贡献。结果表明,本地区土壤有机碳具有较大的空间变异性,土壤剖面的有机碳密度范围为8.9~31.3 kg/m。土壤有机碳的表聚特征明显,平均而言腐殖质层(A1层)集中了全剖面总有机碳的55.2%。坡位和坡向显著影响土壤有机碳的分布:下坡A1层有机碳密度是上坡的1.83倍,其1 m剖面有机碳密度是上坡的1.67倍, 阴坡A1层有机碳密度是阳坡的1.37倍,其1 m剖面有机碳密度是阳坡的1.17倍。坡度对上、下坡土壤有机碳含量和密度均无显著影响。排除坡位和坡积埋藏层等影响因子后,土壤有机碳含量、有机碳密度与黏粒、团聚体均无显著相关性,因此黏粒保护和团聚体保护并非土壤有机碳积累的控制因子。逐步回归显示,坡位是土壤有机碳数量分异的主控因子,可独立解释A1层有机碳密度空间变异的57.4%与1 m剖面有机碳空间变异的63.2%, 下层土壤埋藏层则是主控因子,可独立解释沉积层(B层)有机碳密度空间变异的63.4%, 黏粒和团聚体作为公认的土壤有机碳物理保护因子,却因贡献较小而在逐步回归过程中被剔除。研究结果可为区域森林土壤碳储量准确估算和碳汇林立地选择提供参考。Abstract: In the hilly area of western Zhangguangcai Mountains, a typical secondary forest region of northeast China, a total of 36 sample plots were established symmetrically in accordance with the position and aspect of slope, and soil samples representing different genetic horizons were collected within a profile depth of 100 cm. The effects of topographical factors (the position, aspect, and gradient of slope) on soil organic carbon (SOC) content and density were investigated, and the relations between SOC content and physical protection factors (clay, aggregate) analyzed. Stepwise regression analysis was employed to quantify the relative influence of each factor. The SOC density within 1 m profile ranged from 8.9-31.3 kg/m, of which 55.2% was concentrated in the humus horizon (A1 horizon) on average. SOC distribution was significantly influenced by slope position and aspect. Downslope sites hold 83% more SOC in the A1 horizon and 67% more SOC in the 1 m profile than upslope sites, while ubac sites hold 37% more SOC in the A1 horizon and 17% more SOC in the 1 m profile than adret sites, respectively. No significant relation was found between the amount of SOC and the gradient of slope, when the down- or upslope sites were examined alone. No significant relation between SOC and any of the two physical protection factors could be ascertained if taking out some statistical disturbances (i.e. slope position and buried horizon), which leads us to the recognition that clay and aggregate protections are not controlling factors for SOC accumulation. Stepwise regression analysis suggests that slope position is the dominating factor, which alone could explain 57.4% of the spatial variability of SOC density for the A1 horizon and 63.2% for the 1 m profile, while clay and aggregate are eliminated from the equation due to smaller contribution. The results of this study have implications for accurate estimation of SOC stock in hilly areas, and for site selection of carbon sink forests.
-
Keywords:
- soil organic carbon /
- spatial variability /
- topography /
- clay /
- aggregate
-
黄栌(Cotinus coggygria)是一种优良的生态与景观两用树种,作为北京地区红叶景观的重要组成[1],为首都的生态景观建设发挥了巨大作用[2]。然而,由大丽轮枝菌(Verticillium dahliae)引起的黄栌枯萎病已严重发生,造成严重的经济损失,制约着红叶景观建设[1]。
除黄栌外,大丽轮枝菌的寄主多达400种植物[3],如林木(橄榄Canarium album[4−5]、紫荆Cercis chinensis[6]、枫树Acer spp.[3]等)、农作物(棉花Gossypium spp.[7]、薄荷Mentha canadensis[8]、洋蓟Cynara scolymus[9]、生菜Lactuca sativa var. ramosa[10]等)和花卉(菊花Chrysanthemum morifolium[11]、蔷薇Rosa sp.[12]等)。黄栌枯萎病是一种典型的林木维管束病害,从根部侵入通过皮层扩展至维管束系统,造成根部腐烂、木质坏死和整株枯萎甚至死亡[13−14]。因病原菌定殖在植物维管束系统,且产生的微菌核在土壤中长时间存活,此类病害难以控制,被称为 “植物癌症”[15−17]。
目前生产上尚无抗枯萎病的黄栌品种,而生物防治依赖于土壤环境和气候,且防治效果并不稳定。所以截止目前,化学防治是作为黄栌枯萎病林间防治的主要方法[18]。此前的田间药效试验显示,萎菌净和多菌灵对于黄栌枯萎病有一定防治效果[12]。此外,郑怿[19]在对黄栌枯萎病林间化学防治研究中发现,灌根稀释500倍的嘧菌酯与多菌灵组合药剂处理最佳,且树干注射可在一定程度上防治黄栌枯萎病。
然而,将室内和盆栽苗试验筛选的药剂应用在田间后,防治效果并不稳定[12]。在之前的林间试验中,施药时间多集中于上半年,并且施药次数较少,施药方式比较单一[19−20]。采用的树干输液法[19],由于针头容易被黄栌流胶堵住,导致实际防治效率不理想。因此,在此基础上,本研究改进施药方式,通过在整个生长季内开展灌根、树干注射的施药方式及不同药剂组合的黄栌枯萎病林间防治试验,从而确定最优施药方式及药剂组合,并探索黄栌枯萎病长期防治的可行性,为更高效的黄栌枯萎病化学防治提供科学依据。
1. 材料与方法
1.1 试验样地
试验地位于北京市延庆区八达岭森林公园红叶岭(40°20′46″N,116°00′52″E)。该地区属于温带半湿润半干旱季风气候,夏季高温多雨,冬季寒冷干燥,春、秋短促。年均温10.8 ℃,年降水量454 mm,土壤类型以花岗岩等发育而来的褐土、棕壤为主。
1.2 试验药剂
1.2.1 灌根药剂
枯草芽孢杆菌(Bacillus subtilis):河北中保绿农作物科技有限公司,水悬液,有效成分含量,菌含量 ≥ 1 000 × 108芽孢/g;嘧菌酯(绘绿),先正达农化有限公司,水分散粒剂,有效成分含量50%;丙环唑(扮绿),先正达农化有限公司,乳油,有效成分含量156 g/L。
1.2.2 注射药剂
嘧菌酯(绘绿),先正达农化有限公司,水分散粒剂,有效成分含量50%;多菌灵,河北中保绿农作物科技有限公司,可湿性粉剂,有效成分含量50%;咪鲜胺,苏州富美实植物保护剂有限公司,水乳剂,有效成分含量45%。
1.3 施药方式
1.3.1 土壤灌根
采用直接灌根,将药液直接灌入树坑中,树坑边缘土围为10 ~ 15 cm。
1.3.2 树干注射
电动树干打孔注药机(绿友机械集团股份有限公司,型号ZYJ15A)加压注药:在植株基部用该机器的打孔钻头由上向下成45°钻1 ~ 2个注射孔,深度约为树干直径的1/3,打孔后拆掉钻头,将注射口插入孔中,手动加压注射,保证药剂注入树干,等待压力降低后拔除,利用配套可降解堵孔塞进行封堵。
1.3.3 组合施药
采用直接灌根与电动树干打孔注药机加压注药相结合的施药方法。具体灌根和注射方法与单独施药相同。
1.4 试验设计
选样地内样树180棵,分为12个处理,每个处理15棵样树,随机分为3个小区,处理1为空白对照。对样地进行分区分组,其中灌根3组,树干注射2组,组合施药为灌根和树干注射两两组合,共6组处理(表1)。对所有样树进行调查,记录,挂牌编号。
表 1 试验设计Table 1. Experimental design施药方式
Way of insecticide application灌根药剂
Root irrigation chemical注射药剂
Injecting chemical处理
TreatmentCK 1 灌根 Root irrigation 枯草芽孢杆菌 Bacillus subtilis 2 50%嘧菌酯 50% azoxystrobin 3 156 g/L丙环唑 156 g/L propiconazole 4 树干注射 Trunk injection 50%多菌灵,45%咪鲜胺
50% carbendazim, 45% prochloraz5 50%多菌灵,50%嘧菌酯
50% carbendazim, 50% azoxystrobin6 组合 Combined treatment 枯草芽孢杆菌 Bacillus subtilis 50%多菌灵,45%咪鲜胺
50% carbendazim, 45% prochloraz7 枯草芽孢杆菌 Bacillus subtilis 50%多菌灵,50%嘧菌酯
50% carbendazim, 50% azoxystrobin8 50%嘧菌酯 50% azoxystrobin 50%多菌灵,45%咪鲜胺
50% carbendazim, 45% prochloraz9 50%嘧菌酯 50% azoxystrobin 50%多菌灵,50%嘧菌酯
50% carbendazim, 50% azoxystrobin10 156 g/L丙环唑 156 g/L propiconazole 50%多菌灵,45%咪鲜胺
50% carbendazim, 45% prochloraz11 156 g/L丙环唑 156 g/L propiconazole 50%多菌灵,50%嘧菌酯
50% carbendazim, 50% azoxystrobin12 施药时间均选择在黄栌生长期4—10月(除7月,北京雨季,施药效果不佳)间进行,以探索针对黄栌枯萎病的一整年防治效果。灌根试验于4—6月进行2次施药,8—9月施药2次,每次每株树施用10 L药液。注射试验于4—6月进行树干打孔注药2次,8—9月进行注药2次,每株树每次施用100 mL药液。
1.5 黄栌枯萎病病情指数调查
于2021年5—10月及次年5月,根据黄栌枯萎病分级标准(表2),每个月对不同处理组进行病害分级调查[21−22],以5月初调查值作为发病情况本底值。之后计算6—10月及次年5月的病情指数、校正病情指数及校正防治效果,从而判断不同药剂防治效果优劣。计算公式如下所示。
表 2 黄栌枯萎病分级标准Table 2. Grading standards for Cotinus coggygria Verticillium wilt等级
Grade分级标准
Grading standard代表值
Representative value病害严重程度
Disease severityⅠ 全株叶片无萎蔫症状 No wilting symptoms on the entire plant leaves 0 无病 Healthy Ⅱ 某一末端小枝出现萎蔫或变黄 Wilting or yellowing of a small branch at one end 1 轻度 Mildly diseased Ⅲ 多个末端小枝或次级枝条出现萎蔫或变黄
Multiple terminal twigs or secondary branches appear wilted or yellowed2 Ⅳ 植株三分之二的叶片萎蔫或变黄 Two-thirds of the leaves of the plant wilt or turn yellow 3 重度 Severely diseased Ⅴ 植株85%以上叶片萎蔫,变黄或全株死亡
More than 85% of the plants have wilted leaves, turn yellow, or die as a whole4 ID=0n0+1n1+2n2+3n3+4n44n×100 ICD=IDt−ID0 ECC=ICD0−ICDiICD0×100% 式中:n0 ~ n4是相应病级下的株数,n是调查总株数;ID是病情指数;IDt是第t次病情指数;ID0是初始病情指数;ECC是校正防治效果;ICD是校正病情指数;ICD0是对照组校正病情指数;ICDi是处理组i校正病情指数。
1.6 数据处理
本研究采用Microsoft Office Excel 2019对数据进行整理;采用R4.1.2软件对不同处理校正病情指数及防治效果进行单因素方差分析(one-way ANOVA),并用最小显著差异法(LSD)进行多重比较(P < 0.05);采用ChiPlot网站对两年病情指数进行对比分析,并用T检验计算显著性(*P < 0.05;**P < 0.01;***P < 0.001)。
2. 结果与分析
2.1 不同处理对黄栌枯萎病病情指数的影响
在调查初始病情指数时,将病害严重程度按病害分级分为3类:无病(0)、轻度(1 ~ 2)、重度(3 ~ 4)(表2)。由表3可知,大部分施药处理的无病样树校正病情指数均比对照组(处理1)小,其中,处理4、处理12无病样树的校正病情指数比对照组(处理1)低73.68%,处理3比对照组低43.60%。并且,除处理5外,所有施药组轻度样树的校正病情指数均比对照组小。处理10和处理12的重度发病样树病情有减轻,比初始病情指数分别减少18.75、12.50。这些结果表明:灌根处理3、4和组合处理12能有效防控病害,并且组合处理10和处理12能减缓病情。
表 3 2021年10月份黄栌枯萎病校正病情指数Table 3. Corrective disease index of Cotinus coggygria Verticillium wilt in October 2021处理
Treatment施药方式
Way of insecticide application病害分级
Disease grading校正病情指数
Corrective disease index处理 1 Treatment 1 对照 CK 无病 Healthy 47.50 轻度 Mildly diseased 40.00 重度 Severely diseased − 处理 2 Treatment 2 灌根 Root irrigation 无病 Healthy 75.00 轻度 Mildly diseased 5.69 重度 Severely diseased 0.00 处理 3 Treatment 3 无病 Healthy 26.79 轻度 Mildly diseased −1.57 重度 Severely diseased − 处理 4 Treatment 4 无病 Healthy 12.50 轻度 Mildly diseased 12.50 重度 Severely diseased 0.00 处理 5 Treatment 5 注射 Trunk injection 无病 Healthy 65.63 轻度 Mildly diseased 48.22 重度 Severely diseased 6.25 处理 6 Treatment 6 无病 Healthy 43.75 轻度 Mildly diseased 0.00 重度 Severely diseased −25.00 处理 7 Treatment 7 组合 Combined treatment 无病 Healthy 50.00 轻度 Mildly diseased 30.56 重度 Severely diseased 0.00 处理 8 Treatment 8 无病 Healthy 35.71 轻度 Mildly diseased 2.08 重度 Severely diseased 12.50 处理 9 Treatment 9 无病 Healthy 27.50 轻度 Mildly diseased 20.31 重度 Severely diseased 6.25 处理 10 Treatment 10 无病 Healthy 33.33 轻度 Mildly diseased 28.75 重度 Severely diseased −18.75 处理 11 Treatment 11 无病 Healthy 36.36 轻度 Mildly diseased 25.00 重度 Severely diseased − 处理 12 Treatment 12 无病 Healthy 12.50 轻度 Mildly diseased 23.75 重度 Severely diseased −12.50 注:表中“−” 表示在初始病情时,该处理组没有重病植株。Notes: “−” in the table indicates that there are no severely diseased plants in that treatment group at the time of initial disease. 不同于对照组病情指数出现连续增长的现象,大多数施药处理组的病情指数出现了不同程度的降低或不增长情况(图1)。所有施药组的校正病情指数均小于对照,其中处理12的校正病情指数最小,增长最缓慢。处理5的校正病情指数最大,其次为处理7(图2A)。
图 2 2021年不同处理最终防治效果采用单因素方差分析(one-way ANOVA),并用最小显著差异法(LSD)进行多重比较,不同小写字母表示不同处理组之间差异显著(P < 0.05)。Using one-way ANOVA and conducting multiple comparisons using least significant difference (LSD) method, different lowercase letters indicate significant differences between different treatment groups (P < 0.05).Figure 2. Final control effect of different treatments in 20212.2 不同处理对黄栌枯萎病防治效果的影响
对不同处理病害严重程度调查发现,对照组无病样树全部转变为发病树,轻度发病样树中有60%发展为重度发病(表4)。组合处理12中有26.67%植株保持健康,其中无病样树有66.67%一直保持健康状态,并且处理6、10和12的重度发病样树的病情出现缓解。然而,大部分处理(处理2、3、4、5、7、9、11和12)中都存在由轻度转为重度的现象,其中处理5由轻度到重度的发展率达到86.71%(表4)。
表 4 2021年不同处理病害程度调查Table 4. Investigation for disease degree in different treatments in 2021处理 Treatment 5月 May 10月 October 病害严重程度 Disease severity condition 数量 Number 病害严重程度 Disease severity condition 数量 Number 处理1 Treatment 1 无病 Healthy 5 轻度 Mildly diseased 4 重度 Severely diseased 1 轻度 Mildly diseased 10 轻度 Mildly diseased 4 重度 Severely diseased 6 处理2 Treatment 2 无病 Healthy 1 重度 Severely disease 1 轻度 Mildly diseased 11 轻度 Mildly diseased 10 重度 Severely diseased 1 重度Severely diseased 3 重度 Severely diseased 3 处理3 Treatment 3 无病 Healthy 7 无病 Healthy 2 轻度 Mildly diseased 5 轻度 Mildly diseased 8 无病 Healthy 2 轻度 Mildly diseased 5 重度 Severely diseased 1 处理4 Treatment 4 无病 Healthy 3 无病 Healthy 1 轻度 Mildly diseased 2 轻度 Mildly diseased 11 轻度 Mildly diseased 8 重度 Severely diseased 3 重度 Severely diseased 1 重度 Severely diseased 1 处理5 Treatment 5 无病 Healthy 4 轻度 Mildly diseased 2 重度 Severely diseased 2 轻度 Mildly diseased 7 轻度 Mildly diseased 1 重度 Severely diseased 6 重度 Severely diseased 4 重度 Severely diseased 4 处理6 Treatment 6 无病 Healthy 8 轻度 Mildly diseased 7 重度 Severely diseased 1 轻度 Mildly diseased 6 无病 Healthy 1 轻度 Mildly diseased 5 重度 Severely diseased 1 轻度 Mildly diseased 1 处理7 Treatment 7 无病 Healthy 5 轻度 Mildly diseased 4 重度 Severely diseased 1 轻度 Mildly diseased 9 轻度 Mildly diseased 5 重度 Severely diseased 4 重度 Severely diseased 1 重度 Severely diseased 1 处理8 Treatment 8 无病 Healthy 7 轻度 Mildly diseased 7 轻度 Mildly diseased 6 轻度 Mildly diseased 6 重度 Severely diseased 2 重度 Severely diseased 2 处理9 Treatment 9 无病 Healthy 5 轻度 Mildly diseased 5 轻度 Mildly diseased 8 轻度 Mildly diseased 5 重度 Severely diseased 3 重度 Severely diseased 2 重度 Severely diseased 2 处理10 Treatment 10 无病 Healthy 3 轻度 Mildly diseased 3 轻度 Mildly diseased 10 轻度 Mildly diseased 5 重度 Severely diseased 5 重度 Severely diseased 2 轻度 Mildly diseased 1 重度 Severely diseased 1 处理11 Treatment 11 无病 Healthy 11 无病 Healthy 2 轻度 Mildly diseased 8 重度 Severely diseased 1 轻度 Mildly diseased 4 轻度 Mildly diseased 3 重度 Severely diseased 1 处理12 Treatment 12 无病 Healthy 6 无病 Healthy 4 轻度 Mildly diseased 2 轻度 Mildly diseased 5 无病 Healthy 1 轻度 Mildly diseased 3 重度 Severely diseased 1 重度 Severely diseased 4 轻度 Mildly diseased 1 重度 Severely diseased 3 施药处理组对黄栌枯萎病均有一定的防治效果(图2)。对照的校正病情指数最高,其次是处理5,且与对照组无显著差异(P > 0.05),处理12与对照组的校正病情指数差异最显著(P < 0.05)(图2A)。在6月份(上半年),灌根处理4与组合处理12的校正防治效果最好,分别达到109.09%和100.00%;处理5、9和11的校正防治效果呈现负值(表5)。对于整年防治效果,不同处理之间的防治效果有所差异(图2B)。其中,组合处理12防治效果最好,达到88%;其次是灌根处理组(处理2、3和4),处理8也有较好防效,防治效果为56%(表5和图2B)。处理5的防治最差,处理7次之(图2B)。这些结果表明,灌根丙环唑结合树干注射多菌灵和嘧菌酯复配组合的校正病情指数最低,防治效果最好。
表 5 2021年不同处理校正防治效果Table 5. Corrective control effect of different treatments in 2021处理 Treatment 校正防治效果 Corrective control effects/% 6月 June 7月 July 8月 August 9月 September 10月 October 处理2 Treatment 2 灌根
Root irrigation72.73 ± 31.49abcd 71.43 ± 25.75ab 68.75 ± 12.5ab 69.57 ± 8.70ab 76.00 ± 13.73ab 处理3 Treatment 3 81.82 ± 9.09abc 107.14 ± 14.28a 75.00 ± 22.53ab 60.87 ± 19.92ab 72.00 ± 9.80abc 处理4 Treatment 4 109.09 ± 39.62a 107.14 ± 31.13a 81.25 ± 10.83ab 60.87 ± 13.04ab 68.00 ± 10.38abc 处理5 Treatment 5 注射
Trunk injection−9.09 ± 41.65cde 14.29 ± 32.73bc 6.25 ± 18.75b 8.70 ± 22.59b 0 ± 24.09d 处理6 Treatment 6 9.09 ± 24.05abcde 35.71 ± 12.37abc 68.75 ± 34.80ab 39.13 ± 17.39ab 44.00 ± 17.64abcd 处理7 Treatment 7 组合
Combined treatment0 ± 48.00bcde 7.14 ± 31.13bc 6.25 ± 39.03b 8.70 ± 34.51b 16.00 ± 29.61cd 处理8 Treatment 8 36.36 ± 24.05abcde 7.14 ± 7.14bc 31.25 ± 16.54ab 56.52 ± 23.01ab 56.00 ± 17.43abcd 处理9 Treatment 9 −27.27 ± 18.18de 0 ± 25.75bc 43.75 ± 10.83ab 60.87 ± 15.06ab 50.00 ± 17.43abcd 处理10 Treatment 10 36.36 ± 55.29abcde 35.71 ± 42.86abc 50.00 ± 51.16ab 60.87 ± 32.83ab 44.00 ± 27.45abcd 处理11 Treatment 11 −45.45 ± 24.05e −7.14 ± 21.43c 25.00 ± 28.64ab 30.43 ± 28.51ab 28.00 ± 25.72bcd 处理12 Treatment 12 100.00 ± 31.49ab 64.29 ± 14.29abc 87.50 ± 12.50a 82.61 ± 11.50a 88.00 ± 6.79a 注:不同小写字母表示每个月份不同处理组之间防治效果的差异(P < 0.05)。Note: different lowercase letters represent the differences in prevention and control effects between different treatment groups in each month (P < 0.05). 2.3 不同处理对黄栌枯萎病次年发病情况的影响
从2021年与2022年初始发病情况对比来看,对照组的无病样树数量保持不变,重度发病样树从0增加到3棵。大部分施药处理组的无病样树均在第2年增加,其中处理2、8和9增加最多(图3)。除此之外,处理8的重度发病样树均转为无病或轻度发病(图3)。2022年施药组初始病情指数均低于处理组,其中,处理8的病情指数最低,治疗效果最好(图4)。2022年初始病情指数与2021年最终病情指数相比,包括对照组在内,病情指数都有不同程度的降低。其中,处理6、7和8的病情指数显著降低(P < 0.01),治疗效果较好(图5)。综上所述,灌根枯草芽孢杆菌结合树干注射多菌灵与嘧菌酯复配的组合处理8在感病治疗方面表现最好。
图 5 2021年最终病情指数与2022年初始病情指数对比星号表示2021年最终病情指数与2022年初始病情指数之间有显著差异(*P < 0.05;**P < 0.01)。Asterisk indicates a significant difference between the final disease index in 2021 and the initial disease index in 2022 (*P < 0.05; **P < 0.01).Figure 5. Comparison between initial disease index in 2022 and final disease index in 20213. 讨 论
植物轮枝菌病害,特别是林间树木枯萎病防治,目前尚未有效的措施。本研究探索了土壤灌根和树干注射防治黄栌枯萎病的最佳方案。
树干注药技术对于维管束病害具有优势,因为药剂可以通过质外体迅速到达发病部位[23−24],Mulè[24]研究表明了树干注射是防治橄榄黄萎病(Verticillium wilt of olive)的有效手段。之前的研究表明灌根也能有效防治黄栌枯萎病[12,19]。萎菌净(有效成分为枯草芽孢杆菌)和多菌灵对黄栌枯萎病病菌抑菌效果达到100%,并且田间药效试验显示,萎菌净和多菌灵对于黄栌枯萎病有一定防治效果[12]。此外,树干注射嘧菌酯与多菌灵对黄栌枯萎病有一定防效[19]。本研究在此基础上将两种施药方式结合,并且加入两种新药剂来探索黄栌枯萎病全年防治的可行性。
对照组校正病情指数最高,且对照组与处理6处于同一立地条件中,处理6的校正病情指数明显低于对照组,说明注射多菌灵与嘧菌酯能有效控制病害。灌根处理组在整年防治中均表现较好,其中灌根枯草芽孢杆菌的校正病情指数最低(图2A),并且灌根枯草芽孢杆菌在3组灌根处理中的初始病情指数最高,说明枯草芽孢杆菌能有效控制病害进一步扩散。灌根丙环唑处理在6月份的病情指数减小,表明丙环唑能在病害发生的上半年表现出良好的控制效果。注射组中的处理5防治效果不太理想,校正病情指数与对照无明显差异(P > 0.05),可能是由于处理5的立地条件较差。处理6的防治效果明显好于处理5,之前的林间试验[19]表明嘧菌酯与多菌灵有很好的防治效果。在组合处理中,处理12的校正病情指数最小,病情增长最缓慢,防治效果最好,处理7防治效果最差。此外,处理7、11在6月的病情指数增量要大于对照组,并且比具有同样灌根药剂的处理8和处理12防治效果差,说明树干注射多菌灵与咪鲜胺复配比树干注射嘧菌酯与多菌灵复配的防治效果差。由此可以看出,甲氧基丙烯酸酯类的嘧菌酯对于防治黄栌枯萎病更为有效。灌根处理4和组合处理12无病样树在2021年的校正病情指数比对照组低73.68%,这两个处理有同种灌根药剂丙环唑,说明灌根丙环唑能有效控制病情的加重,并且,与树干注射嘧菌酯与多菌灵复配结合后,防治效果更佳。
2021年防治效果较好的处理组:处理2、3、4、和12,在2022年均有良好的表现,甚至处理2在2022年的初始病情指数比2021年初始病情指数更小。尽管处理5的防治效果不理想,但仍能保持原本的状态,没有进一步加重。与2021年最终病情指数相比,处理6、7和8在2022年初始病情指数都有明显的降低,其中,处理8的初始病情指数最小。结果表明灌根枯草芽孢杆菌结合树干注射多菌灵与嘧菌酯复配的组合在感病治疗方面效果最好。
综上所述,灌根丙环唑和树干注射多菌灵与嘧菌酯复配组合在整年防治中效果最好,防效达到88%;灌根枯草芽孢杆菌与树干注射多菌灵与嘧菌酯复配组合在次年病情指数最低,感病治疗方面效果最好,并且在2021年防治效果方面也有不错的表现,防效达到56%。本研究验证了黄栌枯萎病全年防治的可行性,并且筛选出最优防治方案,对黄栌枯萎病综合防治技术体系的建立提供科学依据。同样的防治试验我们也在香山进行,并且这两组药剂组合也有较好的防治效果,表明本次试验筛选出的防治方案具有实际推广意义。
-
[1] LIU W,CHENG J M,GAO Y, et al. Distribution of soil organic carbon in grassland on loess plateau and its influencing factors[J]. Acta Pedologica Sinica,2012,49(1):68-75.
[1] 刘伟,程积民,高阳,等.黄土高原草地土壤有机碳分布及其影响因素[J].土壤学报,2012,49(1):68-75. [2] YANG W Q,ZHANG J,HU T X, et al. Forest soil ecology[M]. Chengdu: Sichuan Science Press,2006.
[2] LAL R. Forest soils and carbon sequestration [J]. Forest Ecology Management,2005,220:242-258.
[3] WEI H D,MA X Q,LIU A Q, et al. Review on carbon cycle of forest ecosystem[J]. Chinese Journal of Eco-Agriculture,2007,15(2):188-192.
[3] 杨万勤,张健,胡庭兴,等.森林土壤生态学[M].成都:四川科学出版社,2006. [4] 蔚海东,马祥庆,刘爱琴,等.森林生态系统碳循环研究进展[J].中国生态农业学报,2007,15(2):188-192. [4] JIANG H,GAO F,CUI X Y. Soil organic carbon storage and effects of topographical factors of the secondary forest region of Maoer Mountains[J]. Forest Engineering,2015,31(3):15-20.
[5] 姜航,高菲,崔晓阳.帽儿山次生林区土壤有机碳储量及地形因子的影响[J].森林工程,2015,31(3):15-20. [5] XIE X L,SUN B,ZHOU H Z, et al. Soil carbon stocks and their influencing factors under native vegetations in China[J]. Acta Pedologica Sinica,2004,41(5):687-699.
[6] DIXON R K, BROWN S, HOUGHTON R A, et al. Carbon pools and flux of global forest ecosystems [J]. Science,1994,263:185-190.
[6] ZHOU Y R,YU Z L,ZHAO S D. Carbon storage and budget of major Chinese forest types[J]. Chinese Journal of Plant Ecology,2000,24(5):518-522.
[7] LI K R,WANG S Q,CAO M K. China vegetation and soil carbon[J]. Science in China (Series D),2003,33(1):72-80.
[7] WOODWELL G M, WHITAKER R H, REINERS W A, et al. The biota and the world carbon budget [J]. Science,1978,199:141-146.
[8] POST W M, EMANUEL W R, EZINK P J, et al. Soil carbon pools and world life zones [J]. Nature,1982,298:156-159.
[8] HUANG C D,ZHANG J,YANG W Q, et al. Spatial distribution characteristics of forest soil organic carbon stock in Sichuan Province[J]. Acta Ecologica Sinica,2009,29(3):1217-1225.
[9] 解宪丽,孙波,周慧珍,等.不同植被下中国土壤有机碳的储量与影响因子[J].土壤学报,2004,41(5):687-699. [9] WANG X C,QI G,YU D P, et al. Carbon storage, density, and distribution in forest ecosystems in Jilin Province of Northeast China[J]. Chinese Journal of Applied Ecology,2011,22(8):2013-2020.
[10] 周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522. [10] ZHANG C,WANG S Q,YU G R, et al. Soil organic carbon storage in typical forestland in east China[J]. Resource Science,2006,28(2):97-103.
[11] WEI Y W,YU D P,WANG Q J, et al. Soil organic carbon density and its influencing factors of major forest types in the forest region of Northeast China[J]. Chinese Journal of Applied Ecology,2013,24(12):3333-3340.
[11] 李克让,王绍强,曹明奎.中国植被和土壤碳贮量[J].中国科学(D辑),2003,33(1):72-80. [12] WANG Q L, DAI L M, XU G S. A sampling method in measuring forest soil bulk density[J]. Chinese Journal of Ecology, 1996,15(3):68-69.
[12] 黄从德,张健,杨万勤,等.四川森林土壤有机碳储量的空间分布特征[J].生态学报,2009,29(3):1217-1225. [13] LU R K. Soil agricultural chemical analysis method[M]. Beijing: Chinas Agricultural Science and Technology Press,1999.
[13] 王新闯,齐光,于大炮,等.吉林省森林生态系统的碳储量、碳密度及其分布[J].应用生态学报,2011,22(8):2013-2020. [14] 张城,王绍强,于贵瑞,等.中国东部地区典型森林类型土壤有机碳储量分析[J].资源科学,2006,28(2):97-103. [14] CAO J,ZHANG S D,WU J. Several problems about the conpasion between two groups in statistics should be paid attention to[J]. Journal of Mathematical Medicine,2010,23(6):642-643.
[15] 魏亚伟,于大炮,王清君,等.东北林区主要森林类型土壤有机碳密度及其影响因素[J].应用生态学报,2013,24(12): 3333-3340. [15] LI L X,GAO Y H,ZHANG Y. The application of dummy variable in statistics analysis[J]. Mathematical Medical Journal,2006,19(1):51-53.
[16] 王庆礼,代力民,许广山.简易森林土壤容重测定方法[J].生态学杂志,1996,15(3):68-69. [16] WANG Q B,DUAN Y Q,WEI Z Y, et al. Spatial variability of urban soil organic carbon in Shenyang City[J]. Chinese Journal of Soil Science,2009,40(2):252-257.
[17] WANG S Q,ZHOU C H,LIU J Y, et al. Simulation analysis of terrestrial carbon cycle in northeast China[J]. Acta Geographica Sinica,2001,56(4):390-400.
[17] 鲁如坤.土壤农业化学分析法[M].北京:中国农业科技出版社,1999. [18] DU Y X,WU C J,ZHOU S X, et al. Forest soil organic carbon density and its distribution characteristics along an altitudinal gradient in Lushan Mountains of China[J]. Chinese Journal of Applied Ecology,2011,22(7):1675-1681.
[18] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology &, Biochemistry,2000,32:2099-2103.
[19] SIX J, CONANT R T, PAUL E A, et al. Stabilization mechanisms of soil organic matter implications for C-saturation of soils [J]. Plant and Soil,2002,241:155-176.
[19] LIANG Q P,YU X X,PANG Z, et al. Study on soil organic carbon density of different forest types[J]. Ecology and Environmental Sciences,2011,19(4):889-893.
[20] MIAO J,ZHOU C Y,LI S J, et al. Accumulation of soil organic carbon and total nitrogen in Pinus yunnanensis forests at different age stages[J]. Chinese Journal of Applied Ecology,2014,25(3):625-631.
[20] 曹瑾,张双德,武佳.关于统计学中两组比较应注意的几个问题[J].数理医药学杂志,2010,23(6):642-643. [21] SUN W Y,GUO S L,SONG X Y. Effects of topographies and land use on spatial distribution of surface soil organic carbon in hilly region of the Loess Plateau[J]. Journal of Natural Resources,2010,25(3):443-453.
[21] 李丽霞,郜艳晖,张瑛.哑变量在统计分析中的应用[J].数理医学杂志,2006,19(1):51-53. [22] LI L H,GAO E H,MENG M, et al. The distribution of soil organic carbon as affected by landforms in a small watershed of gully region of the Loess Plateau[J]. Acta Ecologica Sinica,2013,31(1):179-187.
[22] 王秋兵,段迎秋,魏忠义,等.沈阳市城市土壤有机碳空间变异特征研究[J].土壤通报,2009,40(2):252-257. [23] XUE L,XUE Y,LIE G W, et al. Soil organic carbon storage on different slope positions in Cunninghamia lanceolata stands[J]. Bulletin of Soil and Water Conservation,2012,32(6):43-46.
[23] 王绍强,周成虎,刘纪远,等.东北地区陆地碳循环平衡模拟分析[J].地理学报,2001,56(4):390-400. [24] 杜有新,吴从建,周赛霞,等.庐山不同海拔森林土壤有机碳密度及分布特征[J].应用生态学报,2011,22(7):1675-1681. [24] ZHANG D,ZHANG Y X,QU L Y, et al. Effects of slope position on soil microbial biomass of Quercus liaotungensis forest in Dongling Mountain[J]. Acta Ecologica Sinica,2012,32(20):6412-6421.
[25] XUE L,LAI R S,CHEN H Y, et al. Soil nutrients ,microorganisms and enzyme activities of model afforestation land of ecological scenic forests in Baoan, Shenzhen[J]. Forest Research,2002,15(2):242-246.
[25] 梁启鹏,余新晓,庞卓,等.不同林分土壤有机碳密度研究[J].生态环境学报,2011,19(4):889-893. [26] 苗娟,周传艳,李世杰,等.不同林龄云南松林土壤有机碳和全氮积累特征[J].应用生态学报,2014,25(3):625-631. [26] NAN Y F,GUO S L,ZHANG Y J, et al. Effects of slope aspect and position on soil organic carbon and nitrogen of terraces in small watershed[J]. Plant Nutrition and Fertilizer Science,2012,18(3):595-601.
[27] HE Z B,ZHAO W Z,LIU H, et al. Characteristic of Picea crassifolia forest soil organic carbon and relationship with environment factors in the Qilian Mountain[J]. Acta Ecologica Sinica,2006,26(8):2572-2577.
[27] 孙文义,郭胜利,宋小燕.地形和土地利用对黄土丘陵沟壑区表层土壤有机碳空间分布影响[J].自然资源学报,2010, 25(3):443-453. [28] 李林海,郜二虎,梦梦,等.黄土高原小流域不同地形下土壤有机碳分布特征[J].生态学报,2013,31(1):179-187. [28] SHU Y,WEI J S,ZHOU M, et al. Study on spatial heterogeneity of Wulashan natural Pinus tabulaeformis forest soil carbon density[J]. Chinese Journal of Soil Science,2013,44(6):1304-1307.
[29] 薛立,薛晔,列淦文,等.不同坡位杉木林土壤碳储量研究[J].水土保持通报,2012,32(6):43-46. [29] ZHANG P,ZHANG T,CHEN N L. Vertical distribution patterns of soil organic carbon and total nitrogen and related affecting factors along northern slope of Qilian Mountains[J]. Chinese Journal of Applied Ecology,2009,20(3):518-524.
[30] 张地,张育新,曲来叶,等.坡位对东灵山辽东栎林土壤微生物量的影响[J].生态学报,2012,32(20):6412-6421. [30] WEI X R,SHAO M A,GAO J L. Relationships between soil organic carbon and environmental factors in gully watershed of the Loess Plateau[J]. Environmental Science,2008,29(10):2879-2884.
[31] LI L,WU L Z,YAO Y F, et al. Study on spatial variations of soil organic carbon in small watershed: taking Huanghuadianzi Watershed as an example[J]. Research of Soil and water conservation,2013,20(5):18-23.
[31] LI Y, ZHANG Q W, REICOSKY D C, et al. Using 137Cs and 210Pbex for quantifying soil organic carbon redistribution affected by intensive tillage on steep slopes [J]. Soil and Tillage Research,2006,86(2):176-184.
[32] 薛立,賴日石,陈红跃,等.深圳宝安区生态风景林典型造林地土壤养分、微生物和酶活性的研究[J].林业科学研究,2002,15(2):242-246. [32] QIU L P,ZHANG X C,CHENG J M. Influence of slope direction, position and fallow measurement of soil enzymatic activities in grassland at Yunwu Mountains[J]. Acta Prataculturae Sinica,2007,16(1):87-93.
[33] AN X J,LI P,DAI W, et al. The variation characteristics of soil organic carbon and its relationship with soil properties in typical subtropical plantations[J]. Chinese Agricultural Science Bulletin,2012,28(22):53-58.
[33] 南雅芳,郭胜利,张彦军,等.坡向和坡位对小流域梯田土壤有机碳、氮变化的影响[J].植物营养与肥料学报,2012, 18(3):595-601. [34] ZHOU L,LI B G,ZHOU G S. Advances in controlling factors of soil organic carbon[J].Advances in Earth Science,2005,20(1):99-105.
[34] 何志斌,赵文智,刘鹄,等.祁连山青海云杉林斑表层土壤有机碳特征及其影响因素[J].生态学报,2006,26(8):2572-2577. [35] LIU M Q,HU F,CHEN X Y. A review on mechanisms of soil organic carbon stabilization[J]. Acta Ecologica Sinica,2007,27(6):2642-2650.
[35] 舒洋,魏江生,周梅,等.乌拉山天然油松林土壤碳密度空间异质性研究[J].土壤通报,2013,44(6):1304-1307. [36] XIE H T,ZHENG L C,HE H B, et al. Spatial distribution of soil organic carbon and total nitrogen in Mollisols in the northeast of China[J]. Chinese Journal of Soil Science,2006,37(6):1058-1061.
[36] 张鹏,张涛,陈年来.祁连山北麓山体垂直带土壤碳氮分布特征及影响因素[J].应用生态学报,2009,20(3):518-524. [37] 魏孝荣,邵明安,高建伦.黄土高原沟壑区小流域土壤有机碳与环境因素的关系[J].环境科学,2008,29(10):2879-2884. [37] XU X W,PAN G X,CAO Z H, et al. A study on the influence of soil organic carbon density and its spatial distribution in Anhui Province of China[J]. Geographical Research,2007,26(6):1077-1086.
[38] 李龙,吴丽芝,姚云峰,等.小流域土壤有机碳含量的空间变异特征研究:以内蒙古赤峰市黄花甸子流域为例[J].水土保持研究,2013,20(5):18-23. [38] XU X W,PAN G X,HOU P C. Impact of different land use on topsoil organic carbon density in Anhui Province[J]. Journal of Soil and Water Conservation,2005,19(6):195-200.
[39] 邱莉萍,张兴昌,程积民.坡向坡位和撂荒地对云雾山草地土壤酶活性的影响[J].草业学报,2007,16(1):87-93. [39] HE Y,LI T X,WANG Y D. Soil organic carbon of tea plantation on different slope positions in low mountains and hills[J]. Journal of Soil and Water Conservation,2009,23(2):122-126.
[40] 安晓娟,李萍,戴伟,等.亚热带几种林分类型土壤有机碳变化特征及与土壤性质的关系[J].中国农学通报,2012, 28(22):53-58. [40] PAN G X,ZHOU P,LI L Q, et al. Core issues and research progresses of soil science of C sequestration[J]. Acta Pedologica Sinica,2007,44(2):328-337.
[41] 周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[J].地球科学进展,2005,20(1):99-105. [41] GAO H Y,GUO S L,LIU W Z, et al. Effect of fertilization on organic carbon distribution in various fractions of aggregates in caliche soils[J]. Acta Pedologica Sinica,2010,47(5):931-938.
[42] 刘满强,胡锋,陈小云.土壤有机碳稳定机制研究进展[J].生态学报,2007,27(6):2642-2650. [42] SUN H W,WANG J,LUO W H. The relative importance of the variables in the linear regression model to measure[J]. Chinese Journal of Health Statistics,2012,29(6):900-902.
[43] WANG H Y,YANG F T,LIU L. Comparison and application of standardized regressive coefficient &, partial correlation coefficient[J]. Quantitative &, Technical Economics,2006(9):150-155.
[43] HASSINK J. The capacity of soils to preserve organic C and N by their association with clay and silt particles[J]. Plant and Soil,1997,191:77-87.
[44] SIX J, BOSSUYT H, DEGRYZE S, et al. A history of research on the link between micro aggregates, soil biota, and soil organic matter dynamics [J]. Soil and Tillage Research,2004,79(1):7-31.
[44] SHI C D,XU M X,QIU Y J, et al. Changes and influencing factors of the soil organic carbon in farmland in the last 30 years on Hilly Loess Plateau: a case study in Zhuanglang County,Gansu Province[J]. Environmental Science,2014,35(3):1009-1104.
[45] 解宏图,郑立臣,何红波,等.东北黑土有机碳、全氮空间分布特征[J].土壤通报,2006,37(6):1058-1061. [45] ZHANG B,DAI L Y,HUANG Q F, et al. Dominance analysis for the relative importance of independent variable in logistic regression model[J]. Zhejiang Preventive Medicine,2012,24(8):13-15.
[46] ZHANG Y,SHI X Z,ZHAO Y C, et al. Estimates and affecting factors of soil organic carbon storages in Yunnan-Guizhou-Guangxi region of China[J]. Environmental Science,2008,29(8):2314-2319.
[46] BATJES N H, DIJKSHOOM J A. Carbon and nitrogen stocks in the soils of the Amazon Region [J]. Geoderma,1999,89(3/4):273-286.
[47] 许信旺,潘根兴,曹志红,等.安徽省土壤有机碳空间差异及影响因素[J].地理研究,2007,26(6):1077-1086. [47] ZHAO M S,ZHANG G L,WANG D C, et al. Spatial variability of soil organic matter and its dominating factors in Xu-Huai Alluvial Plain[J]. Acta Pedologica Sinica,2013,50(1):1-11.
[48] 许信旺,潘根兴,侯鹏程.不同土地利用对表层土壤有机碳密度的影响[J].水土保持学报,2005,19(6):195-200. [49] 何燕,李廷轩,王永东.低山丘陵区不同坡位茶园土壤有机碳特征研究[J].水土保持学报,2009,23(2):122-126. [50] GLASER B, AMELUNG W. Pyrogenic carbon in native grassland soils along a climosequence in North America[J]. Global Biogeochemical Cycles,2003,17(2):33-41.
[51] WISEMAN C L, PUTTMANN W. Soil organic carbon and its sorptive preservation in central Germany [J]. European Journal of Soil Science,2005,56(1):65-76.
[52] EUSTERHUES K, RUMPEL C, KOGEL-KNABNER I. Organo-mineral associations in sandy acid forest soils: importance of specific surface area of iron oxides and micropores [J]. European Journal of Soil Science,2005,56(6):753-763.
[53] SAGGAR S, PARSHOTAM A, SPARLING G P, et al. 14C-labelled ryegrass turnover and residence times in soils varying in clay content and mineralogy [J]. Soil Biology and Biochemistry,1996,28:1677-1686.
[54] TOOM M S, TRUMBORE S E, CHADWICK O A, et al. Mineral control of soil organic carbon storage and turnover[J]. Nature,1997,389:170-173.
[55] PERCIVAL H J, PARFITT R L, SCOTT N A. Factors controlling soil carbon levels in New Zealand grasslands[J]. Soil Science Society of America Journal,2000,64(5):1623-163.
[56] 潘根兴,周萍,李恋卿,等.固碳土壤学的核心科学问题与研究进展[J].土壤学报,2007,44(2):328-337. [57] 高会议,郭胜利,刘文兆,等.不同施肥处理对黑垆土各粒级团聚体中有机碳含量分布的影响[J].土壤学报,2010,47(5):931-938. [58] KAY B D. Rates of change of soil structure under different cropping systems [J]. Advances in Soil Science,1990,12:1-52.
[59] OORTS K, BOSSUYT H, LABREUCH J, et al. Carbon and nitrogen stocks in relation to organic matter fractions, aggregation and pore size distribution in no-tillage and conventional tillage in northern France [J]. European Journal of Soil Science,2007,58(1):248-259.
[60] BLANCOCANQUI H, LAL R. Mechanisms of carbon sequestration in soil aggregates [J]. Critical Review in Plant Sciences,2004,23(6):481-504.
[61] 孙红卫,王玖,罗文海.线性回归模型中自变量相对重要性的衡量[J].中国卫生统计,2012,29(6):900-902. [62] 王海燕,杨方廷,刘鲁.标准化系数与偏相关系数的比较与应用[J].数量经济技术经济研究,2006(9):150-155. [63] 师晨迪,许明祥,邱宇洁,等.黄土丘陵区县域农田土壤近30年有机碳变化及影响因素研究:以甘肃庄浪县为例[J].环境科学,2014,35(3):1009-1104. [64] 张波,代鲁燕,黄启风,等.Logistic回归模型中自变量相对重要性的优势分析[J].浙江预防医学,2012,24(8):13-15. [65] 张勇,史学正,赵永存,等.滇黔桂地区土壤有机碳储量与影响因素研究[J].环境科学,2008,29(8):2314-2319. [66] 赵明松,张甘霖,王德彩,等.徐淮黄泛平原土壤有机质空间变异特征及主控因素分析[J].土壤学报,2013,50(1): 1-11. -
期刊类型引用(11)
1. 施云凤,李文秀,贺军军,罗萍,张华林,张凤英. 甲基磺酸乙酯诱变对阳春砂仁出苗的影响. 热带农业科学. 2024(10): 47-51 . 百度学术
2. 崔晓彤,刘婉婷,张恒月,段乌拉,王君. 杨树派间远缘杂种小胡杨(Populus simonii×P.euphratica)组培快繁体系的构建. 分子植物育种. 2023(07): 2337-2343 . 百度学术
3. 王欢,曾琪瑶,王春胜,郭俊杰,曾杰. 油榄仁种胚高质量组培快繁体系. 中南林业科技大学学报. 2023(09): 53-61+88 . 百度学术
4. 李春兰. 毛白杨良种繁殖技术研究进展. 安徽农业科学. 2022(10): 22-24+45 . 百度学术
5. 王雷,李百和,赵培霞,韩鹏. 蒙古莸(Caryopteris mongholica)组培快繁体系的建立和优化. 分子植物育种. 2022(14): 4745-4754 . 百度学术
6. 陈耀兵,罗凯,李美东,黄秀芳,刘汉蓁,王水清,陈圣林. “鄂选1号”山桐子组培繁育体系构建. 北京林业大学学报. 2022(12): 23-31 . 本站查看
7. 屈超,叶冬梅,郭欣,崔雁敏,朝勒蒙. 互叶醉鱼草茎段组织培养技术研究. 江苏林业科技. 2022(06): 15-19 . 百度学术
8. 马秋月,李倩中,李淑顺,朱璐,颜坤元,李淑娴,张斌,闻婧. 元宝枫组织培养及快速繁殖技术研究. 南京林业大学学报(自然科学版). 2021(02): 220-224 . 百度学术
9. 石进朝,陈博,陈兰芬,李彦侠. 阳光毛白杨带芽茎段再生体系的构建. 江苏农业科学. 2021(14): 50-55 . 百度学术
10. 梁艳,赵雪莹,白雪,刘德强,张妍,潘朋. PVP处理对黑皮油松外植体酚类物质形成及酶活性的影响. 林业科学. 2021(10): 166-174 . 百度学术
11. 王建新,吴志茹,冯光惠. 榆林沙区引种波尔卡树莓的组织培养与快速繁殖. 山西农业科学. 2019(12): 2078-2082 . 百度学术
其他类型引用(2)
计量
- 文章访问数: 2086
- HTML全文浏览量: 129
- PDF下载量: 34
- 被引次数: 13