高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水、氮耦合对阔叶红松林叶凋落物分解的影响

李东升 郑俊强 王秀秀 郑兴波 韩士杰

李东升, 郑俊强, 王秀秀, 郑兴波, 韩士杰. 水、氮耦合对阔叶红松林叶凋落物分解的影响[J]. 北京林业大学学报, 2016, 38(4): 44-52. doi: 10.13332/j.1000-1522.20150429
引用本文: 李东升, 郑俊强, 王秀秀, 郑兴波, 韩士杰. 水、氮耦合对阔叶红松林叶凋落物分解的影响[J]. 北京林业大学学报, 2016, 38(4): 44-52. doi: 10.13332/j.1000-1522.20150429
LI Dong-sheng, ZHENG Jun-qiang, WANG Xiu-xiu, ZHENG Xing-bo, HAN Shi-jie. Effects of nitrogen addition and water manipulation on leaf litter decomposition[J]. Journal of Beijing Forestry University, 2016, 38(4): 44-52. doi: 10.13332/j.1000-1522.20150429
Citation: LI Dong-sheng, ZHENG Jun-qiang, WANG Xiu-xiu, ZHENG Xing-bo, HAN Shi-jie. Effects of nitrogen addition and water manipulation on leaf litter decomposition[J]. Journal of Beijing Forestry University, 2016, 38(4): 44-52. doi: 10.13332/j.1000-1522.20150429

水、氮耦合对阔叶红松林叶凋落物分解的影响

doi: 10.13332/j.1000-1522.20150429
基金项目: 

“973”国家重点基础研究发展计划项目(2011CB403202、2014CB954400)、国家自然科学基金项目(41173087、41330530)

详细信息
    作者简介:

    李东升。主要研究方向:森林土壤生态。Email: cortege@163.com 地址:110016辽宁省沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所。
    责任作者: 韩士杰,研究员,博士生导师。主要研究方向:森林生态。Email: hansj@iae.ac.cn 地址:同上

    李东升。主要研究方向:森林土壤生态。Email: cortege@163.com 地址:110016辽宁省沈阳市沈河区文化路72号中国科学院沈阳应用生态研究所。
    责任作者: 韩士杰,研究员,博士生导师。主要研究方向:森林生态。Email: hansj@iae.ac.cn 地址:同上

Effects of nitrogen addition and water manipulation on leaf litter decomposition

  • 摘要: 以长白山阔叶红松林优势树种红松、蒙古栎、色木槭、水曲柳、紫椴的叶凋落物为研究对象,定量模拟加水、加氮、凋落物量对凋落物分解和土壤碳氮过程的影响。结果表明:加氮处理对凋落物分解没有显著影响, 凋落物量增多使分解率下降, 加水处理显著促进水曲柳凋落物的分解。培养结束后,凋落物的氮质量分数增加、碳质量分数和C/N降低,凋落物残体的δN值因凋落物种类、水氮处理的不同而不同,δC值下降, 土壤的碳、氮质量分数增加,δN值无显著变化,δC值和C/N下降。

     

  • [1] HAN X, WANG C M, LIN Z L. Effects of simulated nitrogen deposition on temperate forest litter decomposition[J]. Ecology and Environmental Sciences,2014, 23(9): 1503-1508.
    [1] 韩雪,王春梅,蔺照兰.模拟氮沉降对温带森林凋落物分解的影响[J]. 生态环境学报, 2014, 23(9): 1503-1508.
    [2] HOLLAND E A, DENTENE F J R, BRASWELL B H, et al. Contemporary and pre-Industrial global reactive nitrogenbudgets[J]. Biogeochemistry, 1999, 46: 7-43.
    [3] DENG X W, LIU Y, HAN S J. Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition[J]. Journal of Forestry Research, 2009, 20(2): 111-116.
    [4] ALLISON S D, LEBAUER D S, OFRECIO M R, et al. Low levels of nitrogen addition stimulate decomposition by boreal forest fungi[J]. Soil Biology and Biochemistry, 2009, 41(2): 293-302.
    [5] MANNING P, SAUNDERS M, BARDGETT R D, et al. Direct and indirect effects of nitrogen deposition on litter decomposition[J]. Soil Biology &, Biochemistry, 2008, 40: 688-698.
    [6] HOEPPNER S S, DUKES J S. Interactive responses of old-field plant growth and composition to warming and precipitation[J]. Global Change Biology, 2012, 18(5): 1754-1768.
    [7] BEIERC, BEIERKUHNLEIN C, WOHLGEMUTH T, et al. Precipitation manipulation experiments: challenges and recommendations for the future[J]. Ecology Letter,2012, 15(8): 899-911.
    [8] SENEVIRATNE S I, CORTI T, DAVIN E L, et al. Investigating soil moisture-climate interactions in a changing climate: a review[J]. Earth-Sci Rev, 2010, 99(3): 125-161.
    [9] GUO R H, ZHENG J Q, HAN S J, et al. Carbon and nitrogen turnover in response to warming and nitrogen addition during early stages of forest litter decomposition: an incubation experiment[J]. Journal of Soils and Sediments, 2013, 13:312-324.
    [10] TAYLOR B R, PARKINSON D, PARSONS W F J. Nitrogen and lignin content as predictors of litter decay rates: a microcosm test[J].Ecology, 1989, 70 (1): 97-104.
    [11] SWIFT M J, HEAL O W, ANDERSON J M. Decomposition in terrestrial ecosystems [M]. Berkley, California: University of California Press, 1979.
    [12] CORNELISSON J H C. An experimental comparison of leaf decomposition rates in a wide range of temperate plant species and types[J]. Journal of Ecology, 1996, 84: 573-582.
    [13] FLANAGAN P W, VAN C K. Nutrient cycling in relation to decomposition and organic matter quality in taiga ecosystems[J]. Canadian Journal of Forest Research 1983, 13: 795-817.
    [14] SHAW M R, HARTE J. Response of nitrogen cycling to simulated climate change: differential responses along a subalpine ecotone[J]. Global Change Biology, 2001, 7: 193-210.
    [15] CUEVAS E, MEDINA E. Nutrient dynamics within Amazonian forests Ⅱ: fine root growth, nutrient availability and leaf litter decomposition[J].Oecologia, 1988, 76: 222-235.
    [16] LOUW J H, SCHOLES M C. The influence of site factors on nitrogen mineralization in forest soils of the Mpumalanga escarpment area: south Africa[J]. Southern African Forestry Journal,2002, 193: 47-63.
    [17] MANSSON K F,FALKENGREN-GRERUP U. The effect of nitrogen deposition on nitrification, carbon and nitrogen mineralization and litter C∶N ratios in oak (Quercus robur L.) forests[J].Forest Ecology and Management, 2002, 6142:1-13.
    [18] HEIM A, FREY B. Early stage litter decomposition rates for Swiss forests[J]. Biogeochemistry,2004, 70(3): 299-313.
    [19] LEMMA B, KLEJA D, NILSSON I, et al. Soil carbon sequestration under different exotic tree species in the south-western highlands of Ethiopia[J]. Geoderma, 2006, 136: 886-898.
    [20] MAGGS J. Organic matter and nutrients in the forest floor of Pinus elliottii plantation and some effects of prescribed burning and superphosphate addition[J]. Forest Ecology and Management, 1988, 23: 105-119.
    [21] SMITH J L, NORTON J M, PAUL E A, et al. Decomposition of C- and N-labeled organisms in soil under anaerobic conditions[J]. Plant and Soil, 1989, 116: 115-118.
    [22] WILLIAM R. WIEDE R, CORY C, et al. Controls over leaf litter decomposition in wet tropical forests[J]. Ecology, 2009, 90(12): 3333-3341.
    [23] CLEVELAND C C, REED S C, TOWNSEND A R. Nutrient regulation of organic matter decomposition in a tropical rain forest[J]. Ecology, 2006, 87:492-503.
    [24] YAHDJIAN L,SALA O E. Vegetation structure constrains primary production response to water availability in the Patagonian steppe[J]. Ecology, 2006, 87(4): 952-962.
    [25] CARREIRO M M, SINSABAUGH R L, REPERT D A, et al. Microbial enzyme shifts explain litter decay responses to simulated nitrogen deposition[J]. Ecology, 2000, 81(9): 2359-2365.
    [26] PRESCOTT C E, BLEVINS L L. Litter decomposition in British Columbia forests: influences of forestry activities[J]. Journal of Ecosystem and Management, 2004, 5(2): 30-43.
    [27] MANNING P, SAUNDERS M, RICHARD D, et al. Direct and indirect effects of nitrogen deposition on litter decomposition[J]. Soil Biology and Biochemistry, 2008, 40: 688-698.
    [28] HOBBIE S E, VITOUSEK P M. Nutrient limitation of decomposition in Hawaiian forests[J]. Ecology, 2000, 81(7): 1867-1877.
  • 加载中
计量
  • 文章访问数:  782
  • HTML全文浏览量:  55
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-30
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回