高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吉林蛟河针阔混交林12个树种生物量分配规律

何怀江 叶尔江·拜克吐尔汉 张春雨 左强 邳田辉 高海涛

何怀江, 叶尔江·拜克吐尔汉, 张春雨, 左强, 邳田辉, 高海涛. 吉林蛟河针阔混交林12个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4): 53-62. doi: 10.13332/j.1000-1522.20150430
引用本文: 何怀江, 叶尔江·拜克吐尔汉, 张春雨, 左强, 邳田辉, 高海涛. 吉林蛟河针阔混交林12个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4): 53-62. doi: 10.13332/j.1000-1522.20150430
HE Huai-jiang, YEERJIANG Baiketuerhan, ZHANG Chun-yu, ZUO Qiang, PI Tian-hui, GAO Hai-tao. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53-62. doi: 10.13332/j.1000-1522.20150430
Citation: HE Huai-jiang, YEERJIANG Baiketuerhan, ZHANG Chun-yu, ZUO Qiang, PI Tian-hui, GAO Hai-tao. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53-62. doi: 10.13332/j.1000-1522.20150430

吉林蛟河针阔混交林12个树种生物量分配规律

doi: 10.13332/j.1000-1522.20150430
基金项目: 

“十二五”国家科技支撑计划项目(2012BAC01B03)、北京市共建项目专项“天然林生物多样性保护技术与杨树抗逆机理研究2012”

详细信息
    作者简介:

    何怀江,博士生。主要研究方向:森林生态系统碳循环。Email:442488087.2007@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院。
    责任作者: 张春雨,副教授。主要研究方向:森林生态系统与全球气候变化。Email: zcy_0250@163.com 地址:同上

    何怀江,博士生。主要研究方向:森林生态系统碳循环。Email:442488087.2007@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院。
    责任作者: 张春雨,副教授。主要研究方向:森林生态系统与全球气候变化。Email: zcy_0250@163.com 地址:同上

Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China

  • 摘要: 研究生物量分配是了解植物结构与功能的有效手段,对陆地森林生态系统碳循环研究起着重要作用。本文以吉林省蛟河林业实验区管理局天然次生混交林内12个优势树种为研究对象,探讨了各树种生物量器官(叶、枝、干、根)分配特征及其与个体大小的关系。结果表明:1)12个树种各器官的相对生长遵循异速生长理论,相对生长关系并不一致。枝与干(1.091~1.254)、枝与根(1.012~1.158)、根与干(1.015~1.202)以及地下与地上部分(0.991~1.070)近于等速生长,叶与枝(0.655~0.757)、叶与干(0.777~0.931)和叶与根(0.718~0.859)呈现为异速生长。2)12个树种各器官生物量分配遵循异速生长分配理论,叶、枝、干和根生物量分配比例的范围依次为1.80%~6.54%、13.87%~27.09%、51.12%~65.03%和15.76%~25.52%,各器官生物量分配比例的均值大小表现为:干(57.09%)>, 根(21.46%)>, 枝(18.59%)>, 叶(2.86%)。根茎比(R/S)范围为0.189~0.355,均值为0.279。3)各器官生物量分配比例以及R/S均与树种有关,不同树种各器官生物量分配比例以及树种间R/S存在显著差异(P<, 0.05), 除根生物量分配比例、R/S与个体大小无显著相关外(P>, 0.05),其他各器官分配比例均与个体大小呈显著相关关系(P<, 0.05)。具体表现为随个体增大,叶和干生物量分配比例显著降低、枝生物量分配比例显著增加(P<, 0.05)的趋势。研究表明:植物各器官在其生长过程中并非都是等速生长,异速生长广泛存在于各器官的生长过程中,同时各器官的生物量分配遵循异速生长分配理论。为了获得更多的空间和营养,植物在生长过程中遵循最优化分配理论,将更多的资源分配给有利于提高自身竞争力的器官,以达到具有更强竞争力和生产力的目的。

     

  • [1] FANG J Y, XU S L. Biomass and net production of forest vegetation in China [J]. Acta Ecologica Sinica,1996,16(5):497-508.
    [1] LITTON C M, RAICH J W, RYAN M G. Carbon allocation in forest ecosystems[J]. Global Change Biology, 2007, 13(10): 2089-2109.
    [2] NIKLAS K J. Modelling below-and above-ground biomass for non-woody and woody plants[J]. Annals of Botany, 2005, 95(2): 315-321.
    [2] CHENG Y F, GUO Q X, LI X N. Biomass allocation of understory plants in a secondary forest in northeast China[J].Chinese Journal of Ecology, 2010, 29(11):2146-2154.
    [3] LI X N, GUO Q X, WANG X C, et al. Allometry of understory tree species in a natural secondary forest in northeast China [J].Scientia Silvae Sinicae, 2010,46(8):22-32.
    [3] ENQUIST B J, NIKLAS K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295: 1517-1520.
    [4] YANG H T, LI X R, LIU L C, et al. Bioamss allocation pattern of four shrubs in desert grassland [J].Journal of Desert Research,2013,33(5):1340-1348.
    [4] LUO W T, JIANG Y, L X T, et al. Patterns of plant biomass allocation in temperate grasslands across a 2 500-km transect in northern China[J]. PloS One, 2013, 8(8):e71749.
    [5] WANG J S, FAN X H, FAN J, et al. Effect of aboveground competition on biomass partitioning of understory Korean pine (Pinus koraiensis) [J].Acta Ecologica Sinica, 2012, 32(8): 2447-2457.
    [5] MCCARTHY M C, ENQUIST B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Functional Ecology, 2007, 21(4): 713-720.
    [6] DONG D, LIN T X, TANG J Y, et al. Biomass allocation patterns and allometric models of Tilia amurensis[J].Journal of Beijing Forestry University, 2014, 36(4):54-63.
    [6] 方精云, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497-508.
    [7] 程远峰, 国庆喜, 李晓娜. 东北天然次生林下木树种的生物量器官分配规律[J]. 生态学杂志, 2010,29(11): 2146-2154.
    [7] ZUO S D, REN Y, WENG X, et al. Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China[J]. Chinese Journal of Applied Ecology, 2015, 26(2):356-362.
    [8] WEINER J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(4): 207-215.
    [8] WANG X L, CHANG Y, CHEN H W, et al. Biomass allocation characteristics of the main forest ecosystems in the Great Xing’ an Mountains, Heilongjiang Province [J].Chinese Journal of Ecology, 2014, 33(6):1437-1444.
    [9] ZUO S D, REN Y, WANG X K, et al. Biomass estimati on factors and their determinants of Cunninghamia lanceolata forests in China[J].Scientia Silvae Sinicae, 2014, 50(11):1-12.
    [9] LUO Y, WANG X, ZHANG X, et al. Root: shoot ratios across China’s forests: forest type and climatic effects[J]. Forest Ecology and Management, 2012, 269: 19-25.
    [10] COSTA T L, SAMPAIO E V, SALES M F, et al. Root and shoot biomasses in the tropical dry forest of semi-arid northeast Brazil[J]. Plant Soil, 2014, 378(1-2): 113-123.
    [10] DONG L H, LI F R, SONG Y W. Error structure and additivity of individual tree biomass model for four natural conifer species in northeast China[J].Chinese Journal of Applied Ecology, 2015, 26(3):704-714.
    [11] 李晓娜, 国庆喜, 王兴昌, 等. 东北天然次生林下木树种生物量的相对生长[J]. 林业科学, 2010, 46(8): 22-32.
    [11] DING S J, ZHANG C Y, XIA F C, et al. Habitat associations of understorey species spatial distribution in old growth broadleaved Korean pine (Pinus koraiensis) forest[J]. Acta Ecologica Sinica, 2012, 32(11) : 3334-3342.
    [12] WANG L, LI L, CHEN X, et al. Biomass allocation patterns across China’s terrestrial biomes[J]. PloS One, 2014, 9(4):e93566.
    [12] WANG J, ZHANG C Y, ZHAO X H, et al. Reproductive allocation in dioecious shrub Rhamnus davurica[J].Acta Ecologica Sinica, 2011, 31 (21) :6371-6377.
    [13] JIANG J, ZHANG C Y, ZHAO X H. Plant species-area relationship in a 42 hm research plot of coniferous and board-leaved mixed forest in Jiaohe, Jilin province, China[J].Chinese Journal of Plant Ecology, 2012, 36(1):30-38.
    [13] CHENG D L, NIKLAS K J. Above-and below-ground biomass relationships across 1534 forested communities[J]. Annals of Botany, 2007, 99(1): 95-102.
    [14] 杨昊天, 李新荣, 刘立超, 等. 荒漠草地4种灌木生物量分配特征[J]. 中国沙漠, 2013, 33(5): 1340-1348.
    [14] WANG J S, FAN X H, FAN J, et al.. Effects of tree competition on the biomass partitioning of Abies nephrolepis[J]. Scientia Silvae Sinicae, 2012, 48 (4): 14-20.
    [15] Å, GREN G I, FRANKLIN O. Root: shoot ratios, optimization and nitrogen productivity[J]. Annals of Botany, 2003, 92(6): 795-800.
    [15] FANG C N, PANG S J, ZHENG J P, et al. Biomass estimating models of saplings for 14 species in Changbaishan Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013,35(2):1-9.
    [16] BARBOSA R I, DOS SANTOS J R S, DA CUNHA M S, et al. Root biomass, root: shoot ratio and belowground carbon stocks in the open savannahs of Roraima, Brazilian Amazonia[J]. Australian Journal of Botany, 2012, 60(5): 405-416.
    [16] XIE R, TAO Y, CHANG S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China[J].Chinese Journal of Ecology,2015, 34(3): 648-655.
    [17] CAI M S. Above-and underground biomass allocation of Cunninghamia lanceolata forest in China[J]. Forestry Prospect and Design, 2009(1):95-98.
    [17] WANG X, FANG J, ZHU B. Forest biomass and root-shoot allocation in northeast China[J]. Forest Ecology and Management, 2008, 255(12): 4007-4020.
    [18] LI W, WANG C K, ZHANG Q Z. Differentiation of stand individuals impacts allometry and biomass allocation of Larix gmelinii trees [J]. Acta Ecologica Sinica, 2015,35(6):1679-1687.
    [18] CAIMS M A, BROWN S, HELMER E H, et al. Root biomass allocation in the worlds upland forests[J]. Oecologia, 1997, 111(1): 1-11.
    [19] MOKANY K, RAISON R, PROKUSHKIN A S. Critical analysis of root: shoot ratios in terrestrial biomes[J]. Global Change Biology, 2006, 12(1): 84-96.
    [20] 汪金松, 范秀华, 范娟, 等. 地上竞争对林下红松生物量分配的影响[J]. 生态学报, 2012, 32(8): 2447-2457.
    [21] MATE R, JOHANSSON T, SITOE A. Biomass equations for tropical forest tree species in Mozambique[J]. Forests, 2014, 5(3): 535-556.
    [22] OTUKEI J R, EMANUEL M. Estimation and mapping of above ground biomass and carbon of Bwindi impenetrable National Park using ALOS PALSAR data[J]. South African Journal of Geomatics, 2015, 4(1): 1-13.
    [23] ROJAS-GARCIA F, DE JONG B H J, MARTINEZ-ZURIMENDI P, et al. Database of 478 allometric equations to estimate biomass for Mexican trees and forests[J]. Annals of Forest Science, 2015, 72(6): 1-30.
    [24] 董点, 林天喜, 唐景毅, 等. 紫椴生物量分配格局及异速生长方程[J]. 北京林业大学学报, 2014, 36(4): 54-63.
    [25] 左舒翟, 任引, 翁闲, 等. 亚热带常绿阔叶林9个常见树种的生物量相对生长模型[J]. 应用生态学报, 2015, 26(2):356-362.
    [26] TOMLINSON K W, VAN LANGEVELDE F, WARD D,et al. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage[J]. Annals of Botany, 2013, 112(3): 575-587.
    [27] 王晓莉, 常禹, 陈宏伟, 等. 黑龙江省大兴安岭主要森林生态系统生物量分配特征[J]. 生态学杂志, 2014, 33(6): 1437-1444.
    [28] 左舒翟,任引,王效科,等.中国杉木林生物量估算参数及其影响因素[J].林业科学, 2014, 50(11):1-12.
    [29] SCHALL P, LODIGE C, BECK M, et al. Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings[J]. Forest Ecology and Management, 2012, 266: 246-253.
    [30] 董利虎, 李凤日, 宋玉文. 东北林区 4 个天然针叶树种单木生物量模型误差结构及可加性模型[J]. 应用生态学报, 2015, 26(3):704-714.
    [31] 丁胜建, 张春雨, 夏富才, 等. 老龄阔叶红松林下层木空间分布的生境关联分析[J]. 生态学报, 2012, 32(11): 3334-3342.
    [32] 王娟, 张春雨, 赵秀海, 等. 雌雄异株植物鼠李的生殖分配[J]. 生态学报, 2011, 31(21): 6371-6377.
    [33] 姜俊, 张春雨, 赵秀海. 吉林蛟河42 hm 针阔混交林样地植物种-面积关系[J]. 植物生态学报, 2012, 36(1): 30-38.
    [34] WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9-16.
    [35] GLAZIER D S. Beyond the ‘3/4-power law’: variation in the intra-and interspecific scaling of metabolic rate in animals[J]. Biological Reviews, 2005, 80(4): 611-662.
    [36] POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30-50.
    [37] 汪金松, 范秀华, 范娟, 等. 林木竞争对臭冷杉生物量分配的影响[J]. 林业科学, 2012, 48(4): 14-20.
    [38] 范春楠, 庞圣江, 郑金萍, 等. 长白山林区14种幼树生物量估测模型[J]. 北京林业大学学报, 2013,35(2): 1-9.
    [39] 谢然, 陶冶, 常顺利. 四种一年生荒漠植物构件形态与生物量间的异速生长关系[J]. 生态学杂志, 2015,34(3): 648-655.
    [40] ZHANG H, WANG K, XU X L, et al. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests[J/OL]. Scientific Reports, 2015, 5:15997[2015-06-05]. http:∥doi.org/10.1038/srep15997.
    [41] MCCARTHY M C, ENQUIST B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Functional Ecology, 2007, 21(4): 713-720.
    [42] KANG M, DAI C, JI W, et al. Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia grasslands, China[J]. PloS One, 2013, 8(7): e69561.
    [43] 蔡梅生. 中国杉木林地上地下生物量分配研究[J]. 林业勘察设计, 2009(1): 95-98.
    [44] 李巍, 王传宽, 张全智. 林木分化对兴安落叶松异速生长方程和生物量分配的影响[J]. 生态学报, 2015,35(6):1679-1687.
    [45] GARGAGLIONE V, PERI P L, RUBIO G. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient[J]. Forest Ecology of Management, 2010, 259(6): 1118-1126.
  • 加载中
计量
  • 文章访问数:  3143
  • HTML全文浏览量:  55
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-06-17
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回