• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

吉林蛟河针阔混交林12个树种生物量分配规律

何怀江, 叶尔江·拜克吐尔汉, 张春雨, 左强, 邳田辉, 高海涛

何怀江, 叶尔江·拜克吐尔汉, 张春雨, 左强, 邳田辉, 高海涛. 吉林蛟河针阔混交林12个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4): 53-62. DOI: 10.13332/j.1000-1522.20150430
引用本文: 何怀江, 叶尔江·拜克吐尔汉, 张春雨, 左强, 邳田辉, 高海涛. 吉林蛟河针阔混交林12个树种生物量分配规律[J]. 北京林业大学学报, 2016, 38(4): 53-62. DOI: 10.13332/j.1000-1522.20150430
HE Huai-jiang, YEERJIANG Baiketuerhan, ZHANG Chun-yu, ZUO Qiang, PI Tian-hui, GAO Hai-tao. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53-62. DOI: 10.13332/j.1000-1522.20150430
Citation: HE Huai-jiang, YEERJIANG Baiketuerhan, ZHANG Chun-yu, ZUO Qiang, PI Tian-hui, GAO Hai-tao. Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China[J]. Journal of Beijing Forestry University, 2016, 38(4): 53-62. DOI: 10.13332/j.1000-1522.20150430

吉林蛟河针阔混交林12个树种生物量分配规律

基金项目: 

“十二五”国家科技支撑计划项目(2012BAC01B03)、北京市共建项目专项“天然林生物多样性保护技术与杨树抗逆机理研究2012”

详细信息
    作者简介:

    何怀江,博士生。主要研究方向:森林生态系统碳循环。Email:442488087.2007@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院。
    责任作者: 张春雨,副教授。主要研究方向:森林生态系统与全球气候变化。Email: zcy_0250@163.com 地址:同上

    何怀江,博士生。主要研究方向:森林生态系统碳循环。Email:442488087.2007@163.com 地址:100083 北京市海淀区清华东路35号北京林业大学林学院。
    责任作者: 张春雨,副教授。主要研究方向:森林生态系统与全球气候变化。Email: zcy_0250@163.com 地址:同上

Biomass allocation of twelve tree species in coniferous and broad-leaved mixed forest in Jiaohe, Jilin Province, northeast China

  • 摘要: 研究生物量分配是了解植物结构与功能的有效手段,对陆地森林生态系统碳循环研究起着重要作用。本文以吉林省蛟河林业实验区管理局天然次生混交林内12个优势树种为研究对象,探讨了各树种生物量器官(叶、枝、干、根)分配特征及其与个体大小的关系。结果表明:1)12个树种各器官的相对生长遵循异速生长理论,相对生长关系并不一致。枝与干(1.091~1.254)、枝与根(1.012~1.158)、根与干(1.015~1.202)以及地下与地上部分(0.991~1.070)近于等速生长,叶与枝(0.655~0.757)、叶与干(0.777~0.931)和叶与根(0.718~0.859)呈现为异速生长。2)12个树种各器官生物量分配遵循异速生长分配理论,叶、枝、干和根生物量分配比例的范围依次为1.80%~6.54%、13.87%~27.09%、51.12%~65.03%和15.76%~25.52%,各器官生物量分配比例的均值大小表现为:干(57.09%)>, 根(21.46%)>, 枝(18.59%)>, 叶(2.86%)。根茎比(R/S)范围为0.189~0.355,均值为0.279。3)各器官生物量分配比例以及R/S均与树种有关,不同树种各器官生物量分配比例以及树种间R/S存在显著差异(P<, 0.05), 除根生物量分配比例、R/S与个体大小无显著相关外(P>, 0.05),其他各器官分配比例均与个体大小呈显著相关关系(P<, 0.05)。具体表现为随个体增大,叶和干生物量分配比例显著降低、枝生物量分配比例显著增加(P<, 0.05)的趋势。研究表明:植物各器官在其生长过程中并非都是等速生长,异速生长广泛存在于各器官的生长过程中,同时各器官的生物量分配遵循异速生长分配理论。为了获得更多的空间和营养,植物在生长过程中遵循最优化分配理论,将更多的资源分配给有利于提高自身竞争力的器官,以达到具有更强竞争力和生产力的目的。
    Abstract: Biomass allocation is the most useful tool for studying plant structure and function, and plays an important role in forest ecosystem carbon cycling. In this study, we selected twelve dominant species, e.g., Betula platyphylla, Acer mandshuricum, Ulmus japonica, Pinus koraiensis, Juglans mandshurica, Maackia kiaamurensis, Quercus mongolica, Carpinus cordata, Populus ussuriensis, Acer mono, Fraxinus mandshurica and Tilia amurensis in a natural secondary mixed forest in the Administration Bureau for Jiaohe Forestry Experimental Area, Jilin Province, northeast China. Biomass partitioning of different components including leaf, branch, stem and root was investigated. Meanwhile, the allometric relationships of biomass components and tree size were developed. The main results showed that: 1) the relative growth of biomass components of all species followed the allometric theory, and the allometric power exponents of components were plastic. The MB∝MS, MB∝MR, MS∝MR and MR∝MAG were isometric, the 95% confidence interval of allometric power exponents (α) were 1.091-1.254, 1.012-1.158, 1.015-1.202 and 0.991-1.070, respectively, and the mean value of α were all approximate to the theoretical value (α=1). However, the ML∝MB, ML∝MS and ML∝MR were allometric, the 95% confidence interval of α were 0.655-0.757, 0.777-0.931 and 0.718-0.859 and the mean values of α were 0.706, 0.854 and 0.789, respectively. 2) All biomass components allocation of twelve species followed the allometric allocation theory, the biomass allocation proportion of leaf, branch, stem and root were 1.80%-6.54%, 13.87%-27.09, 51.12%-65.03% and 15.76%-25.52%, respectively. And the mean value of proportion of different biomass components showed an order of stem (57.09%) >, root (21.46%) >, branch (18.59%) >, leaf (2.86%). The root/shoot ratio for all species ranged from 0.189-0.355 with the average value of 0.279. 3) The proportion of biomass allocation of all components and root/shoot ratio were affected by tree species, and there were significant differences (P<, 0.05) among tree species in the proportion of biomass allocation and root/shoot ratio. There were no significant correlations (P>, 0.05) between tree size and allocation proportion of root biomass as well as root/shoot ratio, however, allocation proportion of leaf, branch and stem biomass was significantly correlated with tree size (P<, 0.05) . We concluded that plant organs do not always follow isometric growth in the growth process, allometric growth was instead ubiquitous in the growth process of various organs, meanwhile, the biomass allocation of plant organs follows allometric distribution theory. In order to obtain more space and nutrition, plant follows optimized distribution theory in its growth process and allocates more resources to competitive organs in order to increase its competitiveness and productivity.
  • [1]

    FANG J Y, XU S L. Biomass and net production of forest vegetation in China [J]. Acta Ecologica Sinica,1996,16(5):497-508.

    [1]

    LITTON C M, RAICH J W, RYAN M G. Carbon allocation in forest ecosystems[J]. Global Change Biology, 2007, 13(10): 2089-2109.

    [2]

    NIKLAS K J. Modelling below-and above-ground biomass for non-woody and woody plants[J]. Annals of Botany, 2005, 95(2): 315-321.

    [2]

    CHENG Y F, GUO Q X, LI X N. Biomass allocation of understory plants in a secondary forest in northeast China[J].Chinese Journal of Ecology, 2010, 29(11):2146-2154.

    [3]

    LI X N, GUO Q X, WANG X C, et al. Allometry of understory tree species in a natural secondary forest in northeast China [J].Scientia Silvae Sinicae, 2010,46(8):22-32.

    [3]

    ENQUIST B J, NIKLAS K J. Global allocation rules for patterns of biomass partitioning in seed plants[J]. Science, 2002, 295: 1517-1520.

    [4]

    YANG H T, LI X R, LIU L C, et al. Bioamss allocation pattern of four shrubs in desert grassland [J].Journal of Desert Research,2013,33(5):1340-1348.

    [4]

    LUO W T, JIANG Y, L X T, et al. Patterns of plant biomass allocation in temperate grasslands across a 2 500-km transect in northern China[J]. PloS One, 2013, 8(8):e71749.

    [5]

    WANG J S, FAN X H, FAN J, et al. Effect of aboveground competition on biomass partitioning of understory Korean pine (Pinus koraiensis) [J].Acta Ecologica Sinica, 2012, 32(8): 2447-2457.

    [5]

    MCCARTHY M C, ENQUIST B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Functional Ecology, 2007, 21(4): 713-720.

    [6]

    DONG D, LIN T X, TANG J Y, et al. Biomass allocation patterns and allometric models of Tilia amurensis[J].Journal of Beijing Forestry University, 2014, 36(4):54-63.

    [6] 方精云, 徐嵩龄. 我国森林植被的生物量和净生产量[J]. 生态学报, 1996, 16(5): 497-508.
    [7] 程远峰, 国庆喜, 李晓娜. 东北天然次生林下木树种的生物量器官分配规律[J]. 生态学杂志, 2010,29(11): 2146-2154.
    [7]

    ZUO S D, REN Y, WENG X, et al. Biomass allometric equations of nine common tree species in an evergreen broadleaved forest of subtropical China[J]. Chinese Journal of Applied Ecology, 2015, 26(2):356-362.

    [8]

    WEINER J. Allocation, plasticity and allometry in plants[J]. Perspectives in Plant Ecology, Evolution and Systematics, 2004, 6(4): 207-215.

    [8]

    WANG X L, CHANG Y, CHEN H W, et al. Biomass allocation characteristics of the main forest ecosystems in the Great Xing’ an Mountains, Heilongjiang Province [J].Chinese Journal of Ecology, 2014, 33(6):1437-1444.

    [9]

    ZUO S D, REN Y, WANG X K, et al. Biomass estimati on factors and their determinants of Cunninghamia lanceolata forests in China[J].Scientia Silvae Sinicae, 2014, 50(11):1-12.

    [9]

    LUO Y, WANG X, ZHANG X, et al. Root: shoot ratios across China’s forests: forest type and climatic effects[J]. Forest Ecology and Management, 2012, 269: 19-25.

    [10]

    COSTA T L, SAMPAIO E V, SALES M F, et al. Root and shoot biomasses in the tropical dry forest of semi-arid northeast Brazil[J]. Plant Soil, 2014, 378(1-2): 113-123.

    [10]

    DONG L H, LI F R, SONG Y W. Error structure and additivity of individual tree biomass model for four natural conifer species in northeast China[J].Chinese Journal of Applied Ecology, 2015, 26(3):704-714.

    [11] 李晓娜, 国庆喜, 王兴昌, 等. 东北天然次生林下木树种生物量的相对生长[J]. 林业科学, 2010, 46(8): 22-32.
    [11]

    DING S J, ZHANG C Y, XIA F C, et al. Habitat associations of understorey species spatial distribution in old growth broadleaved Korean pine (Pinus koraiensis) forest[J]. Acta Ecologica Sinica, 2012, 32(11) : 3334-3342.

    [12]

    WANG L, LI L, CHEN X, et al. Biomass allocation patterns across China’s terrestrial biomes[J]. PloS One, 2014, 9(4):e93566.

    [12]

    WANG J, ZHANG C Y, ZHAO X H, et al. Reproductive allocation in dioecious shrub Rhamnus davurica[J].Acta Ecologica Sinica, 2011, 31 (21) :6371-6377.

    [13]

    JIANG J, ZHANG C Y, ZHAO X H. Plant species-area relationship in a 42 hm research plot of coniferous and board-leaved mixed forest in Jiaohe, Jilin province, China[J].Chinese Journal of Plant Ecology, 2012, 36(1):30-38.

    [13]

    CHENG D L, NIKLAS K J. Above-and below-ground biomass relationships across 1534 forested communities[J]. Annals of Botany, 2007, 99(1): 95-102.

    [14] 杨昊天, 李新荣, 刘立超, 等. 荒漠草地4种灌木生物量分配特征[J]. 中国沙漠, 2013, 33(5): 1340-1348.
    [14]

    WANG J S, FAN X H, FAN J, et al.. Effects of tree competition on the biomass partitioning of Abies nephrolepis[J]. Scientia Silvae Sinicae, 2012, 48 (4): 14-20.

    [15]

    Å, GREN G I, FRANKLIN O. Root: shoot ratios, optimization and nitrogen productivity[J]. Annals of Botany, 2003, 92(6): 795-800.

    [15]

    FANG C N, PANG S J, ZHENG J P, et al. Biomass estimating models of saplings for 14 species in Changbaishan Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2013,35(2):1-9.

    [16]

    BARBOSA R I, DOS SANTOS J R S, DA CUNHA M S, et al. Root biomass, root: shoot ratio and belowground carbon stocks in the open savannahs of Roraima, Brazilian Amazonia[J]. Australian Journal of Botany, 2012, 60(5): 405-416.

    [16]

    XIE R, TAO Y, CHANG S L. Allometric relationship between modular morphology and biomass of four annuals in the Gurbantunggut Desert, China[J].Chinese Journal of Ecology,2015, 34(3): 648-655.

    [17]

    CAI M S. Above-and underground biomass allocation of Cunninghamia lanceolata forest in China[J]. Forestry Prospect and Design, 2009(1):95-98.

    [17]

    WANG X, FANG J, ZHU B. Forest biomass and root-shoot allocation in northeast China[J]. Forest Ecology and Management, 2008, 255(12): 4007-4020.

    [18]

    LI W, WANG C K, ZHANG Q Z. Differentiation of stand individuals impacts allometry and biomass allocation of Larix gmelinii trees [J]. Acta Ecologica Sinica, 2015,35(6):1679-1687.

    [18]

    CAIMS M A, BROWN S, HELMER E H, et al. Root biomass allocation in the worlds upland forests[J]. Oecologia, 1997, 111(1): 1-11.

    [19]

    MOKANY K, RAISON R, PROKUSHKIN A S. Critical analysis of root: shoot ratios in terrestrial biomes[J]. Global Change Biology, 2006, 12(1): 84-96.

    [20] 汪金松, 范秀华, 范娟, 等. 地上竞争对林下红松生物量分配的影响[J]. 生态学报, 2012, 32(8): 2447-2457.
    [21]

    MATE R, JOHANSSON T, SITOE A. Biomass equations for tropical forest tree species in Mozambique[J]. Forests, 2014, 5(3): 535-556.

    [22]

    OTUKEI J R, EMANUEL M. Estimation and mapping of above ground biomass and carbon of Bwindi impenetrable National Park using ALOS PALSAR data[J]. South African Journal of Geomatics, 2015, 4(1): 1-13.

    [23]

    ROJAS-GARCIA F, DE JONG B H J, MARTINEZ-ZURIMENDI P, et al. Database of 478 allometric equations to estimate biomass for Mexican trees and forests[J]. Annals of Forest Science, 2015, 72(6): 1-30.

    [24] 董点, 林天喜, 唐景毅, 等. 紫椴生物量分配格局及异速生长方程[J]. 北京林业大学学报, 2014, 36(4): 54-63.
    [25] 左舒翟, 任引, 翁闲, 等. 亚热带常绿阔叶林9个常见树种的生物量相对生长模型[J]. 应用生态学报, 2015, 26(2):356-362.
    [26]

    TOMLINSON K W, VAN LANGEVELDE F, WARD D,et al. Deciduous and evergreen trees differ in juvenile biomass allometries because of differences in allocation to root storage[J]. Annals of Botany, 2013, 112(3): 575-587.

    [27] 王晓莉, 常禹, 陈宏伟, 等. 黑龙江省大兴安岭主要森林生态系统生物量分配特征[J]. 生态学杂志, 2014, 33(6): 1437-1444.
    [28] 左舒翟,任引,王效科,等.中国杉木林生物量估算参数及其影响因素[J].林业科学, 2014, 50(11):1-12.
    [29]

    SCHALL P, LODIGE C, BECK M, et al. Biomass allocation to roots and shoots is more sensitive to shade and drought in European beech than in Norway spruce seedlings[J]. Forest Ecology and Management, 2012, 266: 246-253.

    [30] 董利虎, 李凤日, 宋玉文. 东北林区 4 个天然针叶树种单木生物量模型误差结构及可加性模型[J]. 应用生态学报, 2015, 26(3):704-714.
    [31] 丁胜建, 张春雨, 夏富才, 等. 老龄阔叶红松林下层木空间分布的生境关联分析[J]. 生态学报, 2012, 32(11): 3334-3342.
    [32] 王娟, 张春雨, 赵秀海, 等. 雌雄异株植物鼠李的生殖分配[J]. 生态学报, 2011, 31(21): 6371-6377.
    [33] 姜俊, 张春雨, 赵秀海. 吉林蛟河42 hm 针阔混交林样地植物种-面积关系[J]. 植物生态学报, 2012, 36(1): 30-38.
    [34]

    WANG C. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests[J]. Forest Ecology and Management, 2006, 222(1): 9-16.

    [35]

    GLAZIER D S. Beyond the ‘3/4-power law’: variation in the intra-and interspecific scaling of metabolic rate in animals[J]. Biological Reviews, 2005, 80(4): 611-662.

    [36]

    POORTER H, NIKLAS K J, REICH P B, et al. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control[J]. New Phytologist, 2012, 193(1): 30-50.

    [37] 汪金松, 范秀华, 范娟, 等. 林木竞争对臭冷杉生物量分配的影响[J]. 林业科学, 2012, 48(4): 14-20.
    [38] 范春楠, 庞圣江, 郑金萍, 等. 长白山林区14种幼树生物量估测模型[J]. 北京林业大学学报, 2013,35(2): 1-9.
    [39] 谢然, 陶冶, 常顺利. 四种一年生荒漠植物构件形态与生物量间的异速生长关系[J]. 生态学杂志, 2015,34(3): 648-655.
    [40]

    ZHANG H, WANG K, XU X L, et al. Biogeographical patterns of biomass allocation in leaves, stems, and roots in China’s forests[J/OL]. Scientific Reports, 2015, 5:15997[2015-06-05]. http:∥doi.org/10.1038/srep15997.

    [41]

    MCCARTHY M C, ENQUIST B J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation[J]. Functional Ecology, 2007, 21(4): 713-720.

    [42]

    KANG M, DAI C, JI W, et al. Biomass and its allocation in relation to temperature, precipitation, and soil nutrients in Inner Mongolia grasslands, China[J]. PloS One, 2013, 8(7): e69561.

    [43] 蔡梅生. 中国杉木林地上地下生物量分配研究[J]. 林业勘察设计, 2009(1): 95-98.
    [44] 李巍, 王传宽, 张全智. 林木分化对兴安落叶松异速生长方程和生物量分配的影响[J]. 生态学报, 2015,35(6):1679-1687.
    [45]

    GARGAGLIONE V, PERI P L, RUBIO G. Allometric relations for biomass partitioning of Nothofagus antarctica trees of different crown classes over a site quality gradient[J]. Forest Ecology of Management, 2010, 259(6): 1118-1126.

  • 期刊类型引用(1)

    1. 徐媛,陈锦玲,陈玉梅,李璐璐,李惠敏,秦新民. 干旱胁迫下花生转录组与miRNA测序及相关基因的表达. 贵州农业科学. 2021(01): 1-9 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  4081
  • HTML全文浏览量:  160
  • PDF下载量:  31
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-06-16
  • 发布日期:  2016-04-29

目录

    /

    返回文章
    返回