高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

兴安落叶松林细根解剖结构和化学组分对N沉降的响应

闫国永 王晓春 邢亚娟 韩士杰 王庆贵

闫国永, 王晓春, 邢亚娟, 韩士杰, 王庆贵. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报, 2016, 38(4): 36-43. doi: 10.13332/j.1000-1522.20150433
引用本文: 闫国永, 王晓春, 邢亚娟, 韩士杰, 王庆贵. 兴安落叶松林细根解剖结构和化学组分对N沉降的响应[J]. 北京林业大学学报, 2016, 38(4): 36-43. doi: 10.13332/j.1000-1522.20150433
YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. doi: 10.13332/j.1000-1522.20150433
Citation: YAN Guo-yong, WANG Xiao-chun, XING Ya-juan, HAN Shi-jie, WANG Qing-gui. Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 36-43. doi: 10.13332/j.1000-1522.20150433

兴安落叶松林细根解剖结构和化学组分对N沉降的响应

doi: 10.13332/j.1000-1522.20150433
基金项目: 

国家自然科学基金项目(31170421、41575137、31370494、31070406)、黑龙江省自然科学基金重点项目(ZD201406)

详细信息
    作者简介:

    闫国永。主要研究方向:气候变化背景下的生态系统响应。Email:244692216@qq.com 地址:150040 黑龙江省哈尔滨市和兴路26 号东北林业大学生态研究中心。
    责任作者: 王庆贵,博士,教授。主要研究方向:气候变化背景下的生态系统响应。Email:qgwang1970@163.com 地址:150080 黑龙江省哈尔滨市南岗区学府路74号黑龙江大学农业资源与环境学院。

    闫国永。主要研究方向:气候变化背景下的生态系统响应。Email:244692216@qq.com 地址:150040 黑龙江省哈尔滨市和兴路26 号东北林业大学生态研究中心。
    责任作者: 王庆贵,博士,教授。主要研究方向:气候变化背景下的生态系统响应。Email:qgwang1970@163.com 地址:150080 黑龙江省哈尔滨市南岗区学府路74号黑龙江大学农业资源与环境学院。

Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China

  • 摘要: 大气N沉降逐渐加强,可能会改变地下C循环和土壤C状态,促使细根结构及其化学组分发生变化。N沉降对细根动态和形态影响方面的研究较多,但对细根结构和组分的影响还没有系统的研究。于2012年5月,在大兴安岭北方森林统一立地条件下建立4个水平N肥处理,分别为对照(CK,0 g/(m· a))、低N处理(TL, 2.5 g/(m·a))、中N处理(TM, 5 g/(m·a))和高N处理(TH , 7.5 g/(m·a))。在2014年7月,植物生长季,利用挖掘法获取兴安落叶松完整根系,测定其1~5级细根在不同N沉降处理下皮层厚度、维管束直径、根系直径、维根比以及化学组分变化,旨在探讨不同水平N沉降对细根解剖结构和化学组分的影响。结果表明:落叶松细根直径、皮层厚度和维管束直径均随根序的增加而增加,而相同根序、不同水平N沉降处理之间细根直径、皮层厚度、维管束直径和维根比之间存在差异,不同直径等级根系化学组分差异显著。上述实验结果说明,N沉降可能通过影响细根直径、皮层厚度、维管束直径、维根比和化学组分来影响细根生理功能和活性,进而可能影响植物地上和地下C循环。

     

  • [1] JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94:7362-7366.
    [1] WANG X R, WANG Z Q, HAN Y Z, et al. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations [J]. Acta Phytoecologica Sinica, 2005, 29(6): 871-877.
    [2] SHI W, WANG Z Q, LIU J L, et al. Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeast in northeastern China [J]. Acta Phytoecologica Sinica, 2008, 32(6):1217-1226.
    [2] EISSENSTAT D M, YANAI R D. The ecology of root lifespan [J]. Advances in Ecological Research, 1997, 27: 1-60.
    [3] GU J C, ZHAO Y L, WANG W N, et al. Effects of cortical thickness and stele diameter on variations of root diameter in Fraxinus mandshurica and Larix gmelinii[J]. Scientia Silvae Sinicae, 2014, 50(10):59-66
    [3] PREGITZER K S, DE FOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs, 2002, 72:293-309.
    [4] LIU S Q, SONG F B. A comparison of root anatomical structure of maize genotypes with different drought tolerance [J]. Agricultural Research in the Arid Areas, 2007, 25(2): 86-91.
    [4] 王向荣, 王政权, 韩有志, 等. 水曲柳和落叶松不同根序之间细根直径的变异研究[J]. 植物生态学报, 2005, 29(6): 871-877.
    [5] 师伟, 王政权, 刘金梁, 等. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6):1217-1226.
    [5] WEI X, LIU Y, CHEN H B. Anatomical and functional heterogeneity among different root orders of Phellodendron amurense[J]. Journal of Plant Ecology, 2008, 32(6): 1238-1247.
    [6] XU Y, GU J C,DONG X Y, et al. Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China [J]. Journal of Plant Ecology, 2011, 35(9):955-964.
    [6] YANAI R D, EISSENSTAT D M. Coping with herbivores and pathogens: a model of optimal root turnover [J].Functional Ecology, 2002, 16: 865-869.
    [7] WELLS C E, GLENN D M, EISSENSTAT D M. Changes in the risk of fine root mortality with age: a case study in peach, Prunus persica (Rosaceae) [J].American Journal of Botany, 2002, 89:79-87.
    [8] 谷加存, 赵妍丽, 王文娜, 等. 皮层和中柱对水曲柳和落叶松吸收根直径变异的影响[J].林业科学, 2014, 50(10):59-66.
    [9] HISHI T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions [J]. Journal of Forest Research, 2007, 12:126-133.
    [10] REAY D S, DENTENER F, SMITH P, et al. Global nitrogen deposition and carbon sinks [J]. Nature Geoscience, 2008, 1(7): 430-437.
    [11] LIU X, ZHANG Y, HAN W, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494: 459-462.
    [12] FL>Ü, CKIGER W, BRAUN S. Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification [J]. Environmental Pollution, 1998, 102(1): 69-76.
    [13] LIU K H, FANG Y T, YU F M, et al. Soil acidification in response to acid deposition in three subtropical forests of subtropical China [J]. Pedosphere, 2010, 20(3): 399-408.
    [14] VESTGARDEN L S, SELLE L T, STUANEST A O. In situ soil nitrogen mineralisation in a Scots pine (Pinus sylvestris L.) stand: effects of increased nitrogen input [J]. Forest Ecology and Management, 2003, 176(1-3): 205-216.
    [15] LEPPLAMMI-KUJANSUU J, OSTONEN I, STRMGREN M, et al. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production [J]. Plant and Soil, 2013, 366(1-2): 287-303.
    [16] RICHARD W, ZOBEL T B, KINRAIDE V C, et al. Fine root diameters can change in response to changes in nutrient concentrations [J]. Plant and Soil, 2007(1-2), 297: 243-254.
    [17] MATAMALA R, GONZALEZ-MELER M A, JASTROW J D, et al. Impacts of fine root turnover on forest NPP and soil C sequestration potential [J]. Science, 2003, 302: 1385-1387.
    [18] BADDELEY J A, WATSON C A. Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium[J]. Plant and Soil, 2005, 276(1): 15-22.
    [19] JIA S, MCLAUGHLIN N B, GU J, et al. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica[J]. Tree Physiology, 2013, 33(6): 579-589.
    [20] 刘胜群, 宋凤斌. 不同耐旱性玉米根系解剖结构比较研究[J].干旱地区农业研究, 2007, 25(2): 86-91.
    [21] GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytologist, 2008, 180(3): 673-683.
    [22] MCCORMACK M L, ADAMS T S, SMITHWICK E A, et al. Predicting fine root lifespan from plant functional traits in temperate trees [J]. New Phytologist, 2012, 195: 823-831.
    [23] WANG C, HAN S, ZHOU Y, et al. Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China [J]. PLoS One, 2012, 7:e31042.
    [24] HELMISAARI H S, SAARSALMI A, KUKKOLA M. Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland [J]. Plant and Soil, 2009, 314(1):121-132.
    [25] TU L H, PENG Y, CHEN G, et al. Direct and indirect effects of nitrogen additions on fine root decomposition in a subtropical bamboo forest [J]. Plant and Soil, 2014, 389(1-2): 273-288.
    [26] TAYLOR B N, STRAND A E, COOPER E R, et al. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest [J/OL]. Tree Physiology, 2014, [2014-07-22]. http:∥treephys.oxfordjournals.org/contet/early/2014107/22/treephys.tpu058.full.
    [27] FITTER A H, STICKLAND T R. Architectural analysis of plant root systems Ⅲ: Studies on plants under field conditions [J]. New Phytologist, 1992, 121(2): 243-248.
    [28] 卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性[J]. 植物生态学报, 2008, 32(6): 1238-1247.
    [29] TAYLOR B N, BEIDLER K V, COOPER E R, et al. Sampling volume in root studies: the pitfalls of under-sampling exposed using accumulation curves [J]. Ecology Letters, 2013, 16:862-869.
    [30] RYSER P, LAMBERS H. Root and leaf attributes accounting for the performance of fast-and slow-growing grasses at different nutrient supply [J]. Plant and Soil, 1996, 170(2): 251-265.
    [31] RYSER P. Intra-and inter specific variation in root length, root turnover and the underlying parameters[M]∥LAMBERS H, POORTER H, VAN VUUREN M M I. Inherent variation in plant growth, physiological mechanisms and ecological consequences. Leiden: Backhuys, 1998:441-465.
    [32] KONÔPKA B, NOGUCHI K, SAKATA T, et al. Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain eastern Japan [J]. Journal of Forest Research, 2007, 12:143-151.
    [33] HISHI T, TAKEDA H. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa [J]. New Phytologist, 2005, 167(2):509-521.
    [34] HOEBERG P, FAN H, QUIST M, et al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest [J]. Global Change Biology, 2006, 12: 489-499.
    [35] BLANCAFLOR E B, JONES D L, GILROY S. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize [J]. Plant Physiology, 1998, 118(1):159-172.
    [36] LI W, JIN C, GUAN D, et al. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis [J]. Soil Biology and Biochemistry, 2015, 82: 112-118.
    [37] PREGITZER K S, LASKOWSKI M J, BURTON A J, et al. Variation in sugar maple root respiration with root diameter and soil depth [J]. Tree Physiology, 1998, 18:665-670.
    [38] GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest [J]. Oecologia, 2004, 140:450-457.
    [39] 许旸, 谷加存, 董雪云, 等. 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织CN含量[J]. 植物生态学报, 2011, 35(9):955-964.
    [40] BURTON A J, JARVEY J C, JARVI M P, et al. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests [J]. Global Change Biology, 2014, 18: 258-266.
    [41] HYVONEN R, PERSSON T, ANDERSSON S, et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe [J]. Biogeochemistry, 2008, 89: 121-137.
    [42] ADAMS T S, MCCORMACK M L, EISSENSTAT D M. Foraging strategies in trees of different root morphology: the role of root lifespan [J]. Tree Physiology, 2013, 33: 940-948.
  • 加载中
计量
  • 文章访问数:  1151
  • HTML全文浏览量:  178
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-20
  • 刊出日期:  2016-04-30

目录

    /

    返回文章
    返回