Response of root anatomy and tissue chemistry to nitrogen deposition in larch forest in the Great Xing’an Mountains of northeastern China
-
摘要: 大气N沉降逐渐加强,可能会改变地下C循环和土壤C状态,促使细根结构及其化学组分发生变化。N沉降对细根动态和形态影响方面的研究较多,但对细根结构和组分的影响还没有系统的研究。于2012年5月,在大兴安岭北方森林统一立地条件下建立4个水平N肥处理,分别为对照(CK,0 g/(m· a))、低N处理(TL, 2.5 g/(m·a))、中N处理(TM, 5 g/(m·a))和高N处理(TH , 7.5 g/(m·a))。在2014年7月,植物生长季,利用挖掘法获取兴安落叶松完整根系,测定其1~5级细根在不同N沉降处理下皮层厚度、维管束直径、根系直径、维根比以及化学组分变化,旨在探讨不同水平N沉降对细根解剖结构和化学组分的影响。结果表明:落叶松细根直径、皮层厚度和维管束直径均随根序的增加而增加,而相同根序、不同水平N沉降处理之间细根直径、皮层厚度、维管束直径和维根比之间存在差异,不同直径等级根系化学组分差异显著。上述实验结果说明,N沉降可能通过影响细根直径、皮层厚度、维管束直径、维根比和化学组分来影响细根生理功能和活性,进而可能影响植物地上和地下C循环。Abstract: The increase of nitrogen deposition may change the underground carbon cycle and soil carbon pool, and thus influence the structure and chemical components of fine roots. A number of researches have been done on fine root dynamics and morphological structure, but little is known of effects of nitrogen deposition on fine root structure and components. In the Great Xing’an Mountains, northeastern China, four sampling sites were set in a Larix gmelinii forest in May, 2012, i.e., controlling site (CK,0 g/(m·a)), low nitrogen treatment (TL, 2.5 g/(m·a)), medium nitrogen treatment (TM, 5.0 g/(m·a)) and high nitrogen treatment (TH, 7.5·g/(m·a)). In the growing season in July, 2014, the complete root system was dug out, and cortical thickness, stele diameter, root diameter, ratio of stele to root diameter of first five orders, and tissue chemistry (N, C and P) under different nitrogen treatments were measured. The influence of nitrogen deposition on morphological structure and chemical component of fine roots was analyzed. It showed that, with the ascending root order, indices such asroot diameter, cortical thickness and stele diameter increased accordingly. However, there were significant differences in cortical thickness, stele diameter, root diameter and ratio of stele to root diameter in the same root order under different levels of N treatment, and root tissue chemistry also had significant difference in different diameter classes. In conclusion, nitrogen deposition may impact cortical thickness, stele diameter, root diameter, ratio of stele to root diameter of first five orders and tissue chemistry (N, C and P), thus influences the physiological functions of fine roots, and finally has impact on above- and underground carbon cycle of plants.
-
Keywords:
- fine root, boreal forest /
- nitrogen deposition /
- anatomical structure /
- carbon cycle
-
-
[1] JACKSON R B, MOONEY H A, SCHULZE E D. A global budget for fine root biomass, surface area, and nutrient contents [J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94:7362-7366.
[1] WANG X R, WANG Z Q, HAN Y Z, et al. Variations of fine root diameter with root order in Manchurian ash and Dahurian larch plantations [J]. Acta Phytoecologica Sinica, 2005, 29(6): 871-877.
[2] SHI W, WANG Z Q, LIU J L, et al. Fine root morphology of twenty hardwood species in Maoershan natural secondary forest in northeast in northeastern China [J]. Acta Phytoecologica Sinica, 2008, 32(6):1217-1226.
[2] EISSENSTAT D M, YANAI R D. The ecology of root lifespan [J]. Advances in Ecological Research, 1997, 27: 1-60.
[3] GU J C, ZHAO Y L, WANG W N, et al. Effects of cortical thickness and stele diameter on variations of root diameter in Fraxinus mandshurica and Larix gmelinii[J]. Scientia Silvae Sinicae, 2014, 50(10):59-66
[3] PREGITZER K S, DE FOREST J L, BURTON A J, et al. Fine root architecture of nine North American trees [J]. Ecological Monographs, 2002, 72:293-309.
[4] LIU S Q, SONG F B. A comparison of root anatomical structure of maize genotypes with different drought tolerance [J]. Agricultural Research in the Arid Areas, 2007, 25(2): 86-91.
[4] 王向荣, 王政权, 韩有志, 等. 水曲柳和落叶松不同根序之间细根直径的变异研究[J]. 植物生态学报, 2005, 29(6): 871-877. [5] 师伟, 王政权, 刘金梁, 等. 帽儿山天然次生林20个阔叶树种细根形态[J]. 植物生态学报, 2008, 32(6):1217-1226. [5] WEI X, LIU Y, CHEN H B. Anatomical and functional heterogeneity among different root orders of Phellodendron amurense[J]. Journal of Plant Ecology, 2008, 32(6): 1238-1247.
[6] XU Y, GU J C,DONG X Y, et al. Fine root morphology, anatomy and tissue nitrogen and carbon contents of the first five orders in four tropical hardwood species in Hainan Island, China [J]. Journal of Plant Ecology, 2011, 35(9):955-964.
[6] YANAI R D, EISSENSTAT D M. Coping with herbivores and pathogens: a model of optimal root turnover [J].Functional Ecology, 2002, 16: 865-869.
[7] WELLS C E, GLENN D M, EISSENSTAT D M. Changes in the risk of fine root mortality with age: a case study in peach, Prunus persica (Rosaceae) [J].American Journal of Botany, 2002, 89:79-87.
[8] 谷加存, 赵妍丽, 王文娜, 等. 皮层和中柱对水曲柳和落叶松吸收根直径变异的影响[J].林业科学, 2014, 50(10):59-66. [9] HISHI T. Heterogeneity of individual roots within the fine root architecture: causal links between physiological and ecosystem functions [J]. Journal of Forest Research, 2007, 12:126-133.
[10] REAY D S, DENTENER F, SMITH P, et al. Global nitrogen deposition and carbon sinks [J]. Nature Geoscience, 2008, 1(7): 430-437.
[11] LIU X, ZHANG Y, HAN W, et al. Enhanced nitrogen deposition over China [J]. Nature, 2013, 494: 459-462.
[12] FL>Ü, CKIGER W, BRAUN S. Nitrogen deposition in Swiss forests and its possible relevance for leaf nutrient status, parasite attacks and soil acidification [J]. Environmental Pollution, 1998, 102(1): 69-76.
[13] LIU K H, FANG Y T, YU F M, et al. Soil acidification in response to acid deposition in three subtropical forests of subtropical China [J]. Pedosphere, 2010, 20(3): 399-408.
[14] VESTGARDEN L S, SELLE L T, STUANEST A O. In situ soil nitrogen mineralisation in a Scots pine (Pinus sylvestris L.) stand: effects of increased nitrogen input [J]. Forest Ecology and Management, 2003, 176(1-3): 205-216.
[15] LEPPLAMMI-KUJANSUU J, OSTONEN I, STRMGREN M, et al. Effects of long-term temperature and nutrient manipulation on Norway spruce fine roots and mycelia production [J]. Plant and Soil, 2013, 366(1-2): 287-303.
[16] RICHARD W, ZOBEL T B, KINRAIDE V C, et al. Fine root diameters can change in response to changes in nutrient concentrations [J]. Plant and Soil, 2007(1-2), 297: 243-254.
[17] MATAMALA R, GONZALEZ-MELER M A, JASTROW J D, et al. Impacts of fine root turnover on forest NPP and soil C sequestration potential [J]. Science, 2003, 302: 1385-1387.
[18] BADDELEY J A, WATSON C A. Influences of root diameter, tree age, soil depth and season on fine root survivorship in Prunus avium[J]. Plant and Soil, 2005, 276(1): 15-22.
[19] JIA S, MCLAUGHLIN N B, GU J, et al. Relationships between root respiration rate and root morphology, chemistry and anatomy in Larix gmelinii and Fraxinus mandshurica[J]. Tree Physiology, 2013, 33(6): 579-589.
[20] 刘胜群, 宋凤斌. 不同耐旱性玉米根系解剖结构比较研究[J].干旱地区农业研究, 2007, 25(2): 86-91. [21] GUO D L, XIA M X, WEI X, et al. Anatomical traits associated with absorption and mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species [J]. New Phytologist, 2008, 180(3): 673-683.
[22] MCCORMACK M L, ADAMS T S, SMITHWICK E A, et al. Predicting fine root lifespan from plant functional traits in temperate trees [J]. New Phytologist, 2012, 195: 823-831.
[23] WANG C, HAN S, ZHOU Y, et al. Responses of fine roots and soil N availability to short-term nitrogen fertilization in a broad-leaved Korean pine mixed forest in northeastern China [J]. PLoS One, 2012, 7:e31042.
[24] HELMISAARI H S, SAARSALMI A, KUKKOLA M. Effects of wood ash and nitrogen fertilization on fine root biomass and soil and foliage nutrients in a Norway spruce stand in Finland [J]. Plant and Soil, 2009, 314(1):121-132.
[25] TU L H, PENG Y, CHEN G, et al. Direct and indirect effects of nitrogen additions on fine root decomposition in a subtropical bamboo forest [J]. Plant and Soil, 2014, 389(1-2): 273-288.
[26] TAYLOR B N, STRAND A E, COOPER E R, et al. Root length, biomass, tissue chemistry and mycorrhizal colonization following 14 years of CO2 enrichment and 6 years of N fertilization in a warm temperate forest [J/OL]. Tree Physiology, 2014, [2014-07-22]. http:∥treephys.oxfordjournals.org/contet/early/2014107/22/treephys.tpu058.full.
[27] FITTER A H, STICKLAND T R. Architectural analysis of plant root systems Ⅲ: Studies on plants under field conditions [J]. New Phytologist, 1992, 121(2): 243-248.
[28] 卫星, 刘颖, 陈海波. 黄波罗不同根序的解剖结构及其功能异质性[J]. 植物生态学报, 2008, 32(6): 1238-1247. [29] TAYLOR B N, BEIDLER K V, COOPER E R, et al. Sampling volume in root studies: the pitfalls of under-sampling exposed using accumulation curves [J]. Ecology Letters, 2013, 16:862-869.
[30] RYSER P, LAMBERS H. Root and leaf attributes accounting for the performance of fast-and slow-growing grasses at different nutrient supply [J]. Plant and Soil, 1996, 170(2): 251-265.
[31] RYSER P. Intra-and inter specific variation in root length, root turnover and the underlying parameters[M]∥LAMBERS H, POORTER H, VAN VUUREN M M I. Inherent variation in plant growth, physiological mechanisms and ecological consequences. Leiden: Backhuys, 1998:441-465.
[32] KONÔPKA B, NOGUCHI K, SAKATA T, et al. Effects of simulated drought stress on the fine roots of Japanese cedar (Cryptomeria japonica) in a plantation forest on the Kanto Plain eastern Japan [J]. Journal of Forest Research, 2007, 12:143-151.
[33] HISHI T, TAKEDA H. Dynamics of heterorhizic root systems: protoxylem groups within the fine-root system of Chamaecyparis obtusa [J]. New Phytologist, 2005, 167(2):509-521.
[34] HOEBERG P, FAN H, QUIST M, et al. Tree growth and soil acidification in response to 30 years of experimental nitrogen loading on boreal forest [J]. Global Change Biology, 2006, 12: 489-499.
[35] BLANCAFLOR E B, JONES D L, GILROY S. Alterations in the cytoskeleton accompany aluminum-induced growth inhibition and morphological changes in primary roots of maize [J]. Plant Physiology, 1998, 118(1):159-172.
[36] LI W, JIN C, GUAN D, et al. The effects of simulated nitrogen deposition on plant root traits: a meta-analysis [J]. Soil Biology and Biochemistry, 2015, 82: 112-118.
[37] PREGITZER K S, LASKOWSKI M J, BURTON A J, et al. Variation in sugar maple root respiration with root diameter and soil depth [J]. Tree Physiology, 1998, 18:665-670.
[38] GUO D L, MITCHELL R J, HENDRICKS J J. Fine root branch orders respond differentially to carbon source-sink manipulations in a longleaf pine forest [J]. Oecologia, 2004, 140:450-457.
[39] 许旸, 谷加存, 董雪云, 等. 海南岛4个热带阔叶树种前5级细根的形态、解剖结构和组织CN含量[J]. 植物生态学报, 2011, 35(9):955-964. [40] BURTON A J, JARVEY J C, JARVI M P, et al. Chronic N deposition alters root respiration-tissue N relationship in northern hardwood forests [J]. Global Change Biology, 2014, 18: 258-266.
[41] HYVONEN R, PERSSON T, ANDERSSON S, et al. Impact of long-term nitrogen addition on carbon stocks in trees and soils in northern Europe [J]. Biogeochemistry, 2008, 89: 121-137.
[42] ADAMS T S, MCCORMACK M L, EISSENSTAT D M. Foraging strategies in trees of different root morphology: the role of root lifespan [J]. Tree Physiology, 2013, 33: 940-948.
-
期刊类型引用(2)
1. 武舒,王洲,张明艳,钟姗辰,王黎,苏晓华,张冰玉. PagHK3a基因敲除对银腺杨抗旱性的影响. 林业科学研究. 2023(05): 1-11 . 百度学术
2. 梁青兰,韩友吉,乔艳辉,谢孔安,李双云,董玉峰,李善文,张升祥. 干旱胁迫对黑杨派无性系生长及生理特性的影响. 北京林业大学学报. 2023(10): 81-89 . 本站查看
其他类型引用(5)
计量
- 文章访问数: 1996
- HTML全文浏览量: 328
- PDF下载量: 46
- 被引次数: 7