Nitrogen transfer in the litter-soil interface continuum of the temperate forest
-
摘要: 凋落物-土壤界面连续体是森林生态系统的最重要部分,也是氮素生物地球化学循环最活跃的场所。土壤氮元素的生物地球化学循环广义上可分为转运和转化2个环节,真菌和细菌分别在这2个环节上扮演重要角色。降雨、氮沉降和温度等变化能够改变森林生态系统的氮生物地球化学循环过程,在全球变化加剧背景下,深入了解凋落物-土壤界面连续体内氮的转运和转化过程和机制尤为重要。本文综述了凋落物-土壤界面连续体的研究现状,通过应用N示踪、分子生物学测序和N-DNA-SIP分子探针技术,研究氮转运和转化的微生物群落及其过程的可行性,并提出今后森林生态系统凋落物-土壤界面连续体的氮循环模式,强调了真菌的转运和细菌的转化过程在氮固持中的贡献,有助于森林生态系统氮固持力和机制系统认知,为开展温带森林生态系统管理和氮排放控制提供了思路。
-
关键词:
- 氮转移 /
- 凋落物-土壤界面连续体 /
- 森林 /
- 真菌 /
- 土壤
Abstract: Litter-soil interface continuum is the most important component of the belowground ecosystem, which is also the most active area of nitrogen biogeochemistry cycling for the temperate forest. Nitrogen cycling in belowground ecosystems can always be considered to involve two processes: transfer and transformation, and fungi and bacteria play important roles in these two ways. Precipitation, nitrogen deposition and warming can change the nitrogen cycling, however, the mechanism of microbial communities driving nitrogen transfer and transformation still remains unclear. Herein, we review the contribution of nitrogen transfer and transformation to the nitrogen cycling, and highlight the response of the microbial community driving the both processes to nitrogen deposition and precipitation in terrestrial ecosystem. Our review has important implications for the nitrogen deposition and precipitation in the temperate forest ecosystem. We also suggest that the leaf litter labeled with N and measurement of the fungi and bacteria communities with N-DNA-SIP technique should be future research focus.-
Keywords:
- nitrogen transfer /
- litter-soil interface continuum /
- forest /
- fungi /
- soil
-
-
[1] WU J D, WANG S L, ZHANG J M. A numerical simulation of the impacts of climate change on water and thermal resources in northeast china [J]. Resources Science, 2000, 22(6): 36-42.
[1] KANDELER E, LUXHØ, I J, TSCHERKO D, et al. Xylanase, invertase and protease at the soil-litter interface of a loamy sand [J]. Soil Biology and Biochemistry, 1999, 31:1171-1179.
[2] L C Q, TIAN H Q, HUANG Y. Ecological effects of increased nitrogen deposition in terrestrial ecosystems [J]. Chinese Journal of Plant Ecology, 2007, 31(2): 205-218.
[2] CHIGINEVA N I, ALEKSANDROVA A V, MARHAN S, et al. The importance of mycelial connection at the soil-litter interface for nutrient translocation, enzyme activity and litter decomposition [J]. Applied Soil Ecology, 2011, 51(1):35-41.
[3] CHEN S S, LIU H Y, GUO D L. Litter stocks and chemical quality of natural birch forests along temperature and precipitation gradients in eastern Inner Mongolia, China [J]. Chinese Journal of Plant Ecology, 2010, 34(9): 1007-1015.
[3] FANG H J, YU G R, CHENG S L, et al. Nitrogen-15 signals of leaf-litter-soil continuum as a possible indicator of ecosystem nitrogen saturation by forest succession and N loads [J]. Biogeochemistry, 2011, 102: 251-263.
[4] MORITSUKA N, YANAI J, MORI K, et al. Biotic and abiotic processes of nitrogen immobilization in the soil-residue interface [J]. Soil Biology and Biochemistry, 2004, 36: 1141-1148.
[5] ABER J D, MELILLO J M. Nitrogen immobilization in decaying hardwood leaf litter as a function of initial nitrogen and lignin content [J]. Canadian Journal of Botany, 1982, 60: 2263-2269.
[6] MCCLAUGHERTY C A, PASTOR J, ABER J D. Forest litter decomposition in relation to soil nitrogen dynamics and litter quality [J]. Ecology, 1985, 66: 266-275.
[7] BERG B, MCCLAUGHERTY C. Nitrogen and phosphorus release from decomposing litter in relation to the disappearance of lignin [J]. Canadian Journal of Botany, 1989, 67: 1148-1156.
[8] LINDAHL B, STENLID J, FINLAY R. Effects of resource availability on mycelial interactions and 32P-transfer between a saprotrophic and an ectomycorrhizal fungus in soil microcosms [J]. FEMS Microbiology Ecology, 2001, 38: 43-52.
[9] FREY S D, SIX J, ELLIOTT E T. Reciprocal transfer of carbon and nitrogen by decomposer fungi at the soil-litter interface [J]. Soil Biology &, Biochemistry, 2003, 35(7): 1001-1004.
[10] LI A, FAHEY T J. Nitrogen translocation to fresh litter in Northern Hardwood Forest [J]. Ecosystems, 2013, 16: 521-528.
[11] VITOUSEK P M, ABER J A, HOWARTH R W. Human alteration of the global nitrogen cycle: sources and consequences [J]. Ecological Applications, 1997, 73: 737-750.
[12] GALLOWAY J N, TOWNSEND A R, ERISMA J W, et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions [J]. Science, 2008, 320:889-892.
[13] STERNER R W, ELSER J J. Ecological stoichiometry: the biology of elements from molecules to the biosphere [M]. Princeton: Princeton University Press, 2002.
[14] FINZI A C, COLE J J, DONEY S C, et al. Research frontiers in the analysis of coupled biogeochemical cycles [J]. Frontiers in Ecology and the Environment, 2011, 9: 74-80.
[15] TOWNSEND A R, BRASWELL B H, HOLLAND E A, et al. Spatial and temporal patterns in terrestrial carbon storage due to deposition of fossil fuel nitrogen [J]. Ecological Applications, 1996, 6: 806-814.
[16] ABER J, MCDOWELL W, NADELHOFFER K, et al. Nitrogen saturation in temperate forest ecosystems [J]. BioScience, 1998, 48: 921-934.
[17] 吴金栋, 王石立, 张建敏.未来气候变化对中国东北地区水热条件影响的数值模拟研究[J]. 资源科学, 2000, 22(6): 36-42. [18] PERSSON E. Structure and function of northern Coniferous forests: an ecosystem study [M]. Stockholm: Swedish Natural Science Research Council,1980.
[19] VITOUSEK P M, HÄ, TTENSCHWILER S, OLANDER L, et al. Nitrogen and nature [J]. AMBIO, 2002, 31: 97-101.
[20] 吕超群, 田汉勤, 黄耀. 陆地生态系统氮沉降增加的生态效应[J]. 植物生态学报, 2007, 02: 205-218. [21] HART S C, FIRESTONE M K. Forest floor-mineral soil interactions in the internal nitrogen cycle of an old-growth forest [J]. Biogeochemistry, 1991, 12: 103-127.
[22] BERG B, MCCLAUGHERTY C. Plant litter: decomposition, humus formation, carbon sequestration [M]. Berlin: Springer, 2003.
[23] 陈莎莎,刘鸿雁,郭大立. 内蒙古东部天然白桦林的凋落物性质和储量及其随温度和降水梯度的变化格局[J]. 植物生态学报, 2010, 34(9): 1007-1015. [24] YADAV V, MALANSON G. Progress in soil organic matter research: litter decomposition, modelling, monitoring and sequestration [J]. Progress of Physical Geography, 2007, 31: 131-154.
[25] BALL B A, CARRILLO Y, MOLINA M. The influence of litter composition across the litter-soil interface on mass loss, nitrogen dynamics and the decomposer community [J]. Soil Biology and Biochemistry, 2014, 69: 71-82.
[26] RAYNER A D M, BODDY L. Fungal decomposition of wood: its biology and ecology [M]. Chichester: Wiley-Interscience Publication, 1988.
[27] BODDY L. Saprotrophic cord-forming fungi: meeting the challenge of heterogeneous environments [J]. Mycologia, 1999, 91: 13-32.
[28] TLALKA M, WATKINSON S C, DARRAH P R, et al. Continuous imaging of amino-acid translocation in intact mycelia of Phanerochaete velutina reveals rapid, pulsatile fluxes [J]. New Phytologist, 2002, 153: 173-84.
[29] TLALKA M, HENSMAN D, DARRAH P R, et al. Noncircadian oscillations in amino acid transport have complementary proflles in assimilatory and foraging hyphae of Phanerochaete velutina[J]. New Phytologist, 2003, 158: 325-35.
[30] TLALKA M, BEBBER D, DARRAH P R, et al. Mycelial networks: nutrient uptake, translocation and role in ecosystems[C]∥BODDY L, FRANKLAND J, VAN WEST P, et al. Ecology of saprotrophic basidiomycetes. London: Academic Press, 2008:43-62.
[31] BOBERG J B, FINLAY R D, STENLID J, et al. Fungal C translocation restricts N-mineralization in heterogeneous environments [J]. Functional Ecology, 2009, 24: 454-459.
[32] SADAKA N, PONGE J F. Fungal colonization of phyllosphere and litter of Quercus rotundifolia Lam. in a holm oak forest (High Atlas, Morocco) [J]. Biology and Fertility of Soils, 2003, 39: 30-36.
[33] OSONO T. Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter [J]. Canadian Journal of Microbiology, 2006, 52(8): 701-716.
[34] VORÍ, Š, KOVÁ, J, BALDRIAN P. Fungal community on decomposing leaf litter undergoes rapid successional changes [J]. The ISME Journal, 2013, 7: 477-486.
[35] NÄ, SHOLM T, KIELLAND K, GANETEG U. Uptake of organic nitrogen by plants [J]. New Phytologist, 2009, 182: 31-48.
[36] RINEAU F, ROTH D, SHAH F, et al. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry [J]. Environmental Microbiology, 2012, 14: 1477-1487.
[37] ZHU W, EHRENFELD J G. The effects of mycorrhizal roots on litter decomposition, soil biota, and nutrients in a spodosolic soil [J]. Plant and Soil, 1996, 179: 109-118.
[38] HODGE A, CAMPBELL C D, FITTER A H. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material[J]. Nature, 2001, 413: 297-299.
[39] HODGE A, FITTER A H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling[J]. PNAS, 2010, 107: 13754-13759.
[40] NUCCIO E E, HODGE A, PETT-RIDGE J, et al. An arbuscular mycorrhizal fungus signiflcantly modifles the soil bacterial community and nitrogen cycling during litter decomposition [J]. Environmental Microbiology, 2013, 15(6): 1870-1881.
[41] LINDAHL B D, IHRMARK K, BOBERG J, et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest [J]. New Phytologist, 2007, 173: 611-620.
[42] WARDLE D A, BONNER K I, NICHOLSON K S. Biodiversity and plant litter: experimental evidence which does not support the view that enhanced species richness improves ecosystem function [J]. Oikos, 1997, 79: 247-258.
[43] HOORENS B, COOMES D, AERTS R. Neighbour identity hardly affects litter-mixture effects on decomposition rates of New Zealand forest species [J]. Oecologia, 2010, 162: 479-489.
[44] GARTNER T B, CARDON Z G. Decomposition dynamics in mixed-species leaf litter [J]. Oikos, 2004, 104: 230-246.
[45] MADRITCH M D, CARDINALE B J. Impacts of tree species diversity on litter decomposition in the northern temperate forest of Wisconsin, USA: a multi-site experiment along a latitudinal gradient [J]. Plant and Soil, 2007, 292: 147-159.
[46] JONSSON M, WARDLE D A. Context dependency of litter-mixing effects on decomposition and nutrient release across a long-term chronosequence [J]. Oikos, 2008, 117: 674-1682.
[47] PEREZ H N, BLUNDO C M, GURVICH D E, et al. More than the sum of its parts: assessing litter heterogeneity effects on the decomposition of litter mixtures through leaf chemistry [J]. Plant and Soil, 2008, 303: 151-159.
[48] HÄ, TTENSCHWILER S, TIUNOV A V, SCHEU S. Biodiversity and litter decomposition in terrestrial ecosystems [J]. Annual Review of Ecology Evolution System, 2005, 36: 191-218.
[49] SCHIMEL J P, HÄ, TTENSCHWILER S. Nitrogen transfer between decomposing leaves of different N status [J]. Soil Biology and Biochemistry, 2007, 39: 1428-1436.
[50] CURRIE W S, ABER J D. Modeling leaching as a decomposition process in humid Montane forests [J]. Ecology, 1997, 78(6): 1844-1860.
[51] TIUNOV A V. Particle size alters litter diversity effects on decomposition [J]. Soil Biology &, Biochemistry, 2009, 41: 176-178.
[52] ROSEMOND A D, SWAN C M, KOMINOSKI J S, et al. Non-additive effects of litter mixing are suppressed in a nutrient-enriched stream [J]. Oikos, 2010, 119: 326-336.
[53] LIN G G, MAO R, ZHAO L, et al. Litter decomposition of a pine plantation is affected by species evenness and soil nitrogen availability [J]. Plant and Soil, 2013, 373: 649-657.
[54] LAGANIÈ, RE J, PARÈ, D, BRADLEY R L. How does a tree species influence litter decomposition: separating the relative contribution of litter quality, litter mixing, and forest floor conditions [J]. Canadian Journal of Forest Research, 2010, 40: 465-475.
[55] ZELLER B, COLIN-BELGRAND M, DAMBRINE E, et al. Decomposition of 15N-labelled beech litter and fate of nitrogen derived from litter in a beech forest [J]. Oecologia, 2000, 123: 550-559.
[56] FAHEY T J, YAVITT J B, SHERMAN R E, et al. Transport of carbon and nitrogen between litter and soil organic matter in a northern hardwood forest [J]. Ecosystems, 2011, 14:326-340.
[57] ZELLER B, COLIN-BELGRAND M, DAMBRINE E, et al. Fate of nitrogen released from 15N-labeled litter in European beech forests [J]. Tree Physiology, 2001, 21:153-162.
[58] BERG B, MATZNER E. Effect of nitrogen deposition on decomposition of plant litter and soil organic matter in forest systems [J]. Environment Review, 1997, 5:1-25.
[59] MEIWES K J, MEESENBURG H, EICHHORN J, et al. Chapter 4: changes in C and N contents of soils under beech forests over a period of 35 years[M]∥BRUMME R, KHANNA P K. Functioning and management of European beech ecosystems. Berlin: Springer, 2009: 49-63.
[60] BUÈ, E M, COURTY P E, MIGNOT D, et al. Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community [J]. Soil Biology and Biochemistry, 2007, 39: 1947-1955 .
[61] KOIDE R, SHARDA J N, HERR J R, et al. Ectomycorrhizal fungi and the biotrophy-saprotrophy continuum[J]. New Phytologist, 2008, 178: 230-233.
[62] BÖDEKER I T M, NYGREN C M R, TAYLOR A F S, et al. Class Ⅱ peroxidase-encoding genes are present in a phylogenetically wide range of ectomycorrhizal fungi [J]. The ISME Journal, 2009, 3: 1387-1395.
[63] AGERER R. Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance [J]. Mycorrhiza, 2001, 11: 107-114.
[64] BALDRIAN P, KOLARÍ, K M,Š, TURSOVÁ, M, et al. Active and total microbial communities in forest soil are largely different and highly stratified during decomposition [J]. ISME Journal, 2012, 6: 248-258.
[65] MCGUIRE A M, CUTHBERT B J, MA Z,et al. The roles of the A and C Sites in the manganese-specific activation of MntR [J]. Biochemistry, 2013, 52: 701-713.
[66] LIU X, CHEN C R, WANG W J, et al. Vertical distribution of soil denitrifying communities in a wet sclerophyll forest under long-term repeated burning [J]. Microbial Ecology, 2015, 70(4): 993-1003.
[67] BOYLE S A, YARWOOD R R, BOTTOMLEY P J, et al. Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon [J]. Soil Biology and Biochemistry, 2008, 40: 443-451.
[68] BUCKLEY D H, HUANGYUTITHAM V, HSU S F, et al. 15N2-DNA-stable isotope probing of diazotrophic methanotrophs in soil [J]. Soil Biology &, Biochemistry, 2008, 40: 1272-1283.
[69] ESPÃ, NA M, RASCHE F, KANDELER E, et al. Identiflcation of active bacteria involved in decomposition of complex maize and soybean residues in a tropical vertisol using 15N-DNA stable isotope probing [J]. Pedobiologia, 2011, 54: 187-193.
[70] ANDEER P, STRAND S E, STAHL D A. High-sensitivity stable-isotope probing by a quantitative terminal restriction fragment length polymorphism protocol [J]. Applied and Environmental Microbiology, 2012, 78(1): 163-169.
[71] CADISCH G, ESPANA M, CAUSEY R, et al. Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils [J]. Rapid Communications in Mass Spectrometry, 2005, 19: 1424-1428.
[72] HE J Z, SHEN J P, ZHANG L M, et a1. Quantitative analyses of the abundance and composition of ammonia-oxidizing bacteria and ammonia oxidizing archaea of a Chinese upland red soil under long-term fertilization practices [J]. Environmental Microbiology, 2007, 9(9): 2364-2374.
[73] JIA Z J, CONRAD R. Bacteria rather than archaea dominate microbial ammonia oxidation in an agricultural soil[J]. Environmental Microbiology, 2009, 11(7): 1658-1671.
[74] ZHANG J B, CAI Z C, ZHU T B, et al. Mechanisms for the retention of inorganic N in acidic forest soils of southern China [J]. Scientific Reports, 2013, 3: 23-42.
[75] TEMPLER P H, MACK M C, CHAPIN F S, et al. Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of 15N tracer field studies [J]. Ecology, 2012, 93: 1816-1829.
[76] CRAINE J M, ELMORE A J, AIDAR M P M, et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability [J]. New Phytologist, 2009, 183: 980-992.
-
期刊类型引用(8)
1. 张元梅,孙桂丽,鲁艳,李利,张志浩,张栋栋. 昆仑山北坡两种优势荒漠灌木的生物量预测模型. 干旱区研究. 2024(02): 284-292 . 百度学术
2. 赵秀英,庞志,于凤强,张建华,杨建军,郝彦卿,白小琴,杨蓉,黄鹏,谢丕青,王佳濛,杨海峰. 柠条锦鸡儿种子产量预测模型研究. 山东农业大学学报(自然科学版). 2024(04): 557-565 . 百度学术
3. 郭玉东,张秋良,陈晓燕,张榕,宝朝鲁门,阿日宾巴雅尔,斯庆毕力格,王颖. 库布齐沙漠地区人工灌木林生物量模型构建. 西北农林科技大学学报(自然科学版). 2022(04): 74-82 . 百度学术
4. 段菁,云海英,李鑫,滕飞,纳青. 基于CASA模型的内蒙古地区草地生产力估测. 林业调查规划. 2022(03): 133-138+155 . 百度学术
5. 朱雅丽,张景路,张绘芳,地力夏提·包尔汉,廉佳佳. 天山中部锦鸡儿生物量分析及模型构建. 林业资源管理. 2022(05): 129-135 . 百度学术
6. 刘江,袁勤,张立欣,代香荣,刘向阳,丁茹,叶丽娜. 库布齐沙漠北缘不同人工灌木林地土壤肥力质量状况. 西北林学院学报. 2021(02): 46-53 . 百度学术
7. 黄小娟,侯扶江. 高寒典型草原主要物种的株高和盖度预测种群和群落地上生物量. 生态学报. 2021(12): 4942-4952 . 百度学术
8. 张殿岱,王雪梅. 塔里木盆地北缘绿洲-荒漠过渡带典型植物地上生物量估测. 生态学杂志. 2019(10): 3211-3220 . 百度学术
其他类型引用(7)
计量
- 文章访问数: 1649
- HTML全文浏览量: 125
- PDF下载量: 32
- 被引次数: 15