• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

小兴安岭凉水典型阔叶红松林林冠干扰特征分析

朱良军, 金光泽, 杜文先, 王晓春

朱良军, 金光泽, 杜文先, 王晓春. 小兴安岭凉水典型阔叶红松林林冠干扰特征分析[J]. 北京林业大学学报, 2016, 38(6): 17-27. DOI: 10.13332/j.1000-1522.20150458
引用本文: 朱良军, 金光泽, 杜文先, 王晓春. 小兴安岭凉水典型阔叶红松林林冠干扰特征分析[J]. 北京林业大学学报, 2016, 38(6): 17-27. DOI: 10.13332/j.1000-1522.20150458
ZHU Liang-jun, JIN Guang-ze, DU Wen-xian, WANG Xiao-chun. Characteristics of canopy disturbance for a typical broadleaf-Korean pine mixed forest in Xiaoxing'an Mountains, Liangshui, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(6): 17-27. DOI: 10.13332/j.1000-1522.20150458
Citation: ZHU Liang-jun, JIN Guang-ze, DU Wen-xian, WANG Xiao-chun. Characteristics of canopy disturbance for a typical broadleaf-Korean pine mixed forest in Xiaoxing'an Mountains, Liangshui, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(6): 17-27. DOI: 10.13332/j.1000-1522.20150458

小兴安岭凉水典型阔叶红松林林冠干扰特征分析

基金项目: 

中央高校基本科研业务费专项基金项目(DL13EA05-02)、国家自然科学基金项目(41471168、31370463)、教育部新世纪优秀人才支持计划项目(NCET-12-0810)、黑龙江省归国留学基金项目(LC2012C09)

详细信息
    作者简介:

    朱良军,博士生。主要研究方向: 树木轮年代学、全球生态学。Email: liangjun_zhu@126.com 地址: 150040黑龙江省哈尔滨市香坊区和兴路51号 东北林业大学科技大厦。

    责任作者:

    王晓春,博士,教授。主要研究方向: 全球生态学、树木年代学。Email: wangxc-cf@nefu.edu.cn 地址:同上。

Characteristics of canopy disturbance for a typical broadleaf-Korean pine mixed forest in Xiaoxing'an Mountains, Liangshui, northeastern China.

  • 摘要: 依托小兴安岭凉水阔叶红松林动态监测样地, 运用样方法和树木年代学方法, 调查了样地中6hm2典型阔叶红松林内扩展林窗(≥50m2)特征, 分析了小兴安岭典型阔叶红松林林冠干扰特征及形成原因。结果表明: 林窗平均密度为7.67个/hm2, 平均产生速率为0.08个/(hm2·a), 干扰频率为0.42%/a, 干扰周转期约240年。林窗形成树种主要是红松(50.22%)、臭冷杉(9.78%)、枫桦(7.78%)以及腐烂程度较严重而无法判别的树种(10.44%), 死亡方式主要为干基折断(54.9%)。林窗由多种死亡方式共同形成, 3种以上形成方式占70.83%。每个林窗形成木平均为9.38 株, 且腐烂等级较高。小径级木是林窗形成的受害者, 而不是贡献者; 针叶树对林窗形成的贡献远大于阔叶树。林窗边缘木平均胸径为46.68cm, 平均树高23.6m, 以红松为主(63.08%)。边缘木中臭冷杉生长最快, 红皮云杉和色木槭生长最慢。不同等级林窗内形成木和边缘木的种类和组成相似, 林窗形成木界定标准对判定林窗形成方式影响很大。综合多种方法调查大、中型林窗及大径级形成木, 可提高林窗干扰历史重建及成因判定的准确性。此外, 利用分层解析法可将发生过2次或多次干扰的大、中型林窗形成与发展过程动态解析, 这对理解林窗干扰动态及森林群落演替至关重要。
    Abstract: To analyze the characteristics and formation causes of expanded gaps due to canopy disturbance in a broadleaf-Korean pine (Pinus koraiensis) mixed forest in Xiaoxing'an Mountains, Liangshui, northeastern China, we investigated all expanded gaps (≥50m2) in a 6ha permanent plot by using the quadrat survey and dendrochronology methods. Results showed that the expanded gaps, with a speed of 0.08ha per year, occurred by an average density of 7.67 gaps per hectare. The frequency and return period of canopy disturbance was 0.42% per year and 240 years, respectively. The main formative tree species of forest gaps were P. koraiensis (50.2%), A. nephrolepis (9.78%), Betula costata (7.78%) and other trees (10.44%) which cannot be identified to species level due to serious decay. Death modes of trees for a gap were mainly breakage at trunk base (BB, 54.89%). Forest gaps were formed mainly by more than three ways of tree death, which accounted for 70.83% of all gaps. The average number of gap makers in a gap was 9.38 individuals, and most of them were in a higher decay level. Small-diameter fallen trees were often the victims rather than makers of gap formation, and the contribution of conifers to a gap formation was much greater than broadleaf trees. The average diameter at breast height in a gap border was 46.68cm (range 11.4-126.5cm) and height of trees 23.6m (range 5.6-42.9m), and the major tree species was Pinus koraiensis (63.08%). Abies nephrolepis grew fastest among all tree species in gap borders, while Picea koraiensis and Acer mono grew slowest. The species and compositions of gap makers and border trees were similar in gaps of different sizes, but the definition standard of gap makers has significant influences on the causes of gap formation. The accuracy of reconstruction of disturbance history and determination of formation causes can be greatly improved by surveying large and medium-sized gaps as well as large diameter makers using several comprehensive methods. In addition, the development and formation process of large and medium-sized gaps in which two or more disturbances occurred can be clarified, which is crucial for understanding the dynamics of canopy disturbance and succession of forest communities.
  • 由松材线虫(Bursaphelenchus xylophilus)引起的松树萎蔫病(pine wilt disease,PWD)是世界林业中的一种毁灭性病害[1]。截至2020年,全国松材线虫发生面积达180.92万hm2,病死松树数量达1947.03万株[2]。目前尚无有效防治松材线虫的方法,仍需对松材线虫致病机理和防治技术做进一步研究和开发。

    在寄主与病原互作过程中,寄主利用模式识别受体(pattern recognition receptors,PRRs)识别病原相关分子模式(pathogen-associated molecular patterns,PAMP),触发病原诱导的免疫反应(PAMP-triggered immunity,PTI)[3-4]。为突破PTI防线,病原分泌效应因子(effector)使植物产生效应因子诱导的感病性(effector-triggered susceptibility,ETS)。效应因子与松材线虫致病性密切相关[5-6]。松材线虫会利用口针注射效应因子靶向攻击寄主以促进入侵。具体表现在:破坏寄主组织细胞[7-8]、诱导寄主细胞死亡[9-11]、负调节寄主信号通路以利于线虫侵染、抑制寄主防御反应、参与线虫自身的解毒作用[12-13]等。在目前的研究中,与根结线虫(Meloidogyne spp.)和胞囊线虫(Heterodera spp.)相比,松材线虫仅找到少量效应因子[14]。为进一步揭示效应因子对松材线虫致病性的作用,有必要对松材线虫效应因子做进一步研究。

    Hedgehog(Hh)信号通路在动物进化、胚胎发育、细胞增殖中起重要作用[15]。在秀丽隐杆线虫(Caenorhabditis elegans)和马来布鲁线虫(Brugia malayi)中均有Hh相关基因[16-17]。秀丽隐杆线虫的Hh相关基因能够编码具有信号肽的分泌蛋白,参与细胞间的信号传递[18],在线虫蜕皮[19]、胞质分裂和生长方面起重要作用[20]。根据前期生物信息学分析,发现松材线虫的Hh相关基因Bx-Hh-grl与秀丽隐杆线虫同源基因在功能上存在差异,可能兼备效应因子的功能。为证实Bx-Hh-grl在松材线虫与寄主互作过程中的具体作用,本研究对Bx-Hh-grl进行了基因克隆和功能验证,旨在为揭示松材线虫致病机理和防治技术研发提供理论基础。

    试验所用Bx1022株系松材线虫由中国林业科学院提供。在25 ℃避光下,将该种群线虫在灰葡萄孢(Botrytis cinerea)菌苔上培养扩繁。供试植物材料为辽宁省黑松(Pinus thunbergii)3年生枝条。接种20 d回收线虫,Trizol(Invitrogen, cat. No. 15596-026)提取总RNA送华大基因(The Beijing Genomics Institute,BGI)进行转录组测序,设为松材线虫植食阶段转录组。灰葡萄孢培养的松材线虫转录组设为菌食阶段转录组。根据均一化后的基因表达量筛选两阶段差异表达基因(differentially expressed gene,DEG),FDR(adjusted false discovery rate)< 0.05。对差异表达基因进行GO(gene ontology)富集分析[21]

    提取松材线虫总RNA并反转录cDNA。根据转录组测序结果,设计Bx-Hh-grl引物(Bx-Hh-grl-F序列:5′-CCACTGGACTGGTCAGCAAA-3′;Bx-Hh-grl-R序列:5′-GAGCTCAGAATGGATGGCGA-3′),进行PCR扩增。PCR产物TA克隆转化大肠杆菌(Escherichia coli)DH5α送生工生物工程(上海)股份有限公司测序,测序所得序列进行生物信息学分析。应用TMHMM 2.0 server和SignalP 4.1 Server对Bx-Hh-grl编码蛋白质进行跨膜结构域和信号肽分析,鉴定Bx-Hh-grl是否为分泌蛋白。

    提取含有相应目的片段的质粒,应用DIG High Prime DNA Labeling and Detection Starter Kit以Bx-Hh-grl- IF和Bx-Hh-grl-IR为引物(Bx-Hh-grl-IF:5′-AACCGTCATCACCAACTGGA-3′,Bx-Hh-grl-IR:5′-ATCATGCCCCGAACAGTTGA-3′)合成原位杂交探针[22-23]。按说明书杂交显影后制成玻片,Olympus BX51显微镜拍照。

    Bx-Hh-grl基因的siRNA(5′-GGCUCCUGG GUUCUCAGAGAUGUAGUGA[dT][dT]-3′)浸泡法处理10 000条混合虫龄线虫,诱导基因沉默,设3个重复,M9缓冲液清洗回收线虫[24]。以经RNAi处理的线虫为Bx-Hh-grl-RNAi组,未经RNAi处理的线虫为CK(control check)组。分别提取Bx-Hh-grl-RNAi组、CK组线虫总RNA,应用GoTaq 2-Step RT-qPCR System试剂盒进行Q-PCR扩增[25],验证基因沉默效果,两独立样本t检验差异显著性。将ddH2O处理设为Mock(模拟接种)组。用Bx-Hh-grl-RNAi组线虫、CK组线虫和Mock分别处理黑松,处理后连续观察症状并拍照记录。

    应用TRIzol法提取松材线虫总RNA,检测合格后送BGI测序。共检测到17 746个基因表达,其中共表达基因14 453个(图1A)。检测到2 257个DEG,其中952条基因表达量显著上调,1 305条基因表达量显著下调(图1B)。对DEG进行GO富集分析,共筛选出11条具有线虫与寄主互作相关功能的基因作为候选基因(表1)。对候选基因编码的蛋白质进行跨膜结构域和信号肽预测,选择11个基因中有跨膜结构域和信号肽且表达量变化最显著的Bx-Ef1(log2(FPKM植食/FPKM菌食) = 4.37)进行序列分析,发现该基因是Hh信号通路相关基因,将其命名为Bx-Hh-grl

    图  1  植食阶段与菌食阶段松材线虫转录组数据分析
    A. 植食阶段与菌食阶段松材线虫差异表达基因筛选; B. 植食阶段与菌食阶段松材线虫基因表达谱。 A, screening of differential expression genes of Bursaphelenchus xylophilus at phytophagous phase and mycetophagous phase; B, gene expression profile of B. xylophilus at phytophagous phase and mycetophagous phase.
    Figure  1.  Transcriptomic analysis of the B. xylophilus at phytophagous phase and mycetophagous phase
    表  1  差异基因的GO富集分析及结构域分析
    Table  1.  GO enrichment analysis and structural domain analysis of differential genes
    序号
    Serial No.
    候选基因
    Candidate
    gene
    表达量对数
    Logarithm of
    expression
    GO富集
    GO
    enrichment
    功能
    Function
    跨膜结构域
    Transmembrane
    domain
    信号肽
    Signal
    peptide
    分泌蛋白
    Secreted
    protein
    1 Bx-Ef1 (Bx-Hh-grl) 4.37 GO:0006950 压力反应 Stress reaction 有 Contain 有 Contain 是 Yes
    2 Bx-Ef2 1.27 GO:0006950 压力反应 Stress reaction 无 Not contain 无 Not contain 否 No
    3 Bx-Ef3 1.37 GO:0006970 渗透胁迫 Osmosis stress 有 Contain 有 Contain 是 Yes
    4 Bx-Ef4 1.45 GO:0009409 抗逆反应 Stress response 无 Not contain 无 Not contain 否 No
    5 Bx-Ef5 1.22 GO:0009636 有毒物质反应 Toxic reactions 无 Not contain 无 Not contain 否 No
    6 Bx-Ef6 0.93 GO:0010038 金属离子反应 Metal ion reactions 无 Not contain 无 Not contain 否 No
    7 Bx-Ef7 1.31 GO:0043966 组蛋白H3的乙酰化 Histone H3 acetylation 无 Not contain 无 Not contain 否 No
    8 Bx-Ef8 1.35 GO:0043967 组蛋白H4乙酰化 Histone H4 acetylation 无 Not contain 无 Not contain 否 No
    9 Bx-Ef9 −1.37 GO:0006950 压力反应 Stress reaction 有 Contain 有 Contain 是 Yes
    10 Bx-Ef10 −0.56 GO:0006950 压力反应 Stress reaction 无 Not contain 无 Not contain 否 No
    11 Bx-Ef11 −1.40 GO:0009612 机械刺激 Mechanical stimulation 无 Not contain 无 Not contain 否 No
    下载: 导出CSV 
    | 显示表格

    测序得到Bx-Hh-grl基因片段长度528 bp,该基因编码的蛋白质等电点为8.33,相对分子质量为18 368.51 Da。筛选出NCBI(National Center for Biotechnology Information)中的8条同源序列,保守结构域分析表明这8条同源序列均包含Ground-like结构域(图2 A)。在9个建树物种中,松材线虫是唯一的植物寄生线虫,其Bx-Hh-grl序列独立成支。对结构域做进一步验证,结果表明Bx-Hh-grl编码的蛋白质具有跨膜结构域和信号肽(图2DE),符合效应因子特征。

    图  2  Bx-Hh-grl基因克隆及结构域分析
    A. Bx-Hh-grl保守结构域;B. Hh-grl序列比对;C. Hh-grl最大似然树;D. Bx-Hh-grl跨膜结构域分析;E. Bx-Hh-grl信号肽分析。A, conservative domain of Bx-Hh-grl; B, sequences alignment of Hh-grl; C, maximum likelihood tree of Hh-grl; D, transmembrane domain analysis of Bx-Hh-grl; E, signal peptide analysis of Bx-Hh-grl.
    Figure  2.  Cloning and domain analysis of Bx-Hh-grl

    线虫效应因子分泌部位在食道腺、性腺和侧尾腺上,其中食道腺为主要分泌器官[26]。采用原位杂交技术进行表达定位分析,结果显示Bx-Hh-grl在线虫食道腺(图3)部位表达,符合线虫效应因子基因表达特点,进一步验证了Bx-Hh-grl的效应因子基因特性。

    图  3  松材线虫Bx-Hh-grl原位杂交
    A.Bx-Hh-grl基因原位杂交;B. 阴性对照;S. 口针;M. 中食道球;G. 食道腺(红色箭头表示阳性杂交结果,黑色箭头表示阴性杂交结果)。A, in-situ hybridization of Bx-Hh-grl; B, negative control; S, stylet; M, metacorpus; G, esophageal glands (the red arrow indicates positive hybridization result, and the black arrow indicates negative hybridization result).
    Figure  3.  In-situ hybridization of Bx-Hh-grl

    使用荧光显微镜对Bx-Hh-grl-RNAi组标记进行检测以定位dsRNA。如图4A所示,松材线虫体内显示绿色荧光,表明dsRNA已成功进入线虫体内。利用Q-PCR检测Bx-Hh-grl的RNAi效率,Bx-Hh-grl RNAi处理组相对CK组(未经RNAi处理)Bx-Hh-grl基因表达下调,说明Bx-Hh-grl基因RNAi效果显著。

    图  4  松材线虫Bx-Hh-grl-RNAi及接种试验
    A.FAM标记Bx-Hh-grl-RNAi后松材线虫荧光照片;B. Bx-Hh-grl-RNAi组相对CK组的Bx-Hh-grl基因表达量;C1. Bx-Hh-grl-RNAi处理线虫接种黑松1 ~ 33 d症状;C2. CK组线虫接种黑松1 ~ 33 d症状;C3. Mock处理(ddH2O处理)黑松1 ~ 33 d症状。A, a fluorescence photograph of B. xylophilus after treatment with Bx-Hh-grl-RNAi labeled by FAM; B, expression of Bx-Hh-grl in Bx-Hh-grl-RNAi group relative to CK group; C1, 1–33 d symptoms of P. thunbergii post-inoculation with Bx-Hh-grl-RNAi treated B. xylophilus; C2, 1–33 d symptoms of P. thunbergii post-inoculation with CK group B. xylophilus; C3, 1–33 d symptoms of P. thunbergii treated with Mock (ddH2O).
    Figure  4.  Bx-Hh-grl-RNAi in B. xylophilus and inoculation

    对接种黑松症状进行比较,具体情况如图4 C。在1 ~ 33 d,症状发生时间最早,且观察结束时病情最严重的是CK组,Bx-Hh-grl-RNAi组显症的时间明显晚于CK组。Bx-Hh-grl-RNAi组于第21 d开始出现症状(2株),少数松树针叶局部褪绿,33 d有2株病株所有针叶褪绿。CK组于第9 d开始出现症状,第17 d黄化增加,病情随时间不断加重,第33 d所有针叶黄化。Mock组黑松在观察期间始终保持健康状态,未出现任何症状。

    通过植食阶段和菌食阶段松材线虫的转录组数据分析筛选出差异表达效应因子基因Bx-Hh-grlBx-Hh-grl主要在食道腺表达,其编码的蛋白质具有跨膜结构域和信号肽,符合效应因子基因特征。Bx-Hh-grl基因的沉默降低了松材线虫的致病性,导致松苗延迟发病,说明Bx-Hh-grl基因对松材线虫致病性具有重要作用。

    线虫效应因子能够影响寄主转录、蛋白质降解以及植物激素运输和积累等生物进程,作用于寄主的卷曲螺旋–核苷酸结合位点–富含亮氨酸重复(coiled-coiled nucleotide binding leucine rich repeat,CC-NB-LRR)蛋白、氧化还原酶、β-1,3-内切葡聚糖酶[27-29]等蛋白,以促进线虫入侵、抵御植物免疫。此外,部分效应因子本身具有降解酶活性进而降解寄主细胞壁,或具有解毒作用以促进其在寄主体内的繁殖。松材线虫的部分效应因子,如BxSapB1、BxSapB3,能够诱导植物细胞死亡。与本文结果一致,当BxSapB1、BxSapB3被沉默后,松苗发病均表现延迟[9,30]。效应因子对松材线虫致病性至关重要,本研究虽已确定Bx-Hh-grl为效应因子基因,但未说明其作用方式,其作用机理有待进一步研究。

    Hh蛋白是一种与形态形成相关的局域性蛋白质配体。Hh通路及其相关基因在胚胎发育、细胞增殖与分化中起重要作用,如决定果蝇属(Drosophila)身体节段极性[31],参与秀丽线虫的胚胎发生过程[18]。不仅与线虫生长发育相关,Hh通路对于线虫寄生至关重要。广州管圆线虫(Angiostrongylus cantonensis)的Hh信号通路被激活时,进一步刺激了寄主自噬分子的表达[32]。效应因子对松材线虫在松木组织中的取食、渗透和迁移具有促进作用,结合Hh蛋白在寄生和生长发育中的作用可知,Bx-Hh-grl对于松材线虫致病性起到关键作用,Bx-Hh-grl的沉默将有利于松材线虫的防治,能够成为潜在防治的靶标基因。本文通过转录组分析技术完成效应因子的筛选[21],进一步丰富了松材线虫效应因子的相关研究,为降低松材线虫致病性,进一步防控松材线虫提供理论依据。

  • [1]

    ZHU J J,LIU Z G. A review on disturbance ecology of forest[J]. Chinese Journal of Applied Ecology, 2004, 15(10): 1703-1710.

    [1]

    BOYD D S, HILL R A, HOPKINSON C, et al. Landscape-scale forest disturbance regimes in southern Peruvian Amazonia[J]. Ecological Applications, 2013, 23(7):1588-1602.

    [2]

    ZHU L J, JIN G Z, WANG X C. Reconstruction of disturbance history of a typical broad-leaved Pinus koraiensis forest and mechanisms of disturbance occurrence[J]. Chinese Journal of Plant Ecology, 2015, 39(2): 125-139.

    [2]

    HART J L. Gap-scale disturbances in central hardwood forests with implications for management[M]// Natural disturbances and historic range of variation. Berlin: Springer International Publishing, 2016.

    [3]

    WANG Y, LIU J, ZHANG J X, et al. Spatial distribution characteristics photon flux density and air temperature in gaps at two different slope directions of secondary forest ecosystem in montane area of eastern Liaoning Province[J]. Chinese Journal of Ecology, 2015, 34(4): 933-940.

    [3]

    OMELKO A, UKHVATKINA O, ZHMERENETSKY A. Disturbance history and natural regeneration of an old-growth Korean pine-broadleaved forest in the Sikhote-Alin mountain range, southeastern Russia[J]. Forest Ecology & Management, 2016, 360: 221-234.

    [4]

    ZHOU Y G, HAO K J, LI X W, et al. Effects of forest gap on seasonal dynamics of soil organic carbon and microbial biomass carbon in Picea asperata forest in Miyalou of western Sichuan, southwest China[J]. Chinese Journal of Applied Ecology, 2014, 25(9): 2469-2476.

    [4]

    MUSCOLO A, BAGNATO S, SIDARI M, et al. A review of the roles of forest canopy gaps[J]. Journal of Forestry Research, 2014, 25(4): 725-736.

    [5] 朱教君, 刘足根. 森林干扰生态研究[J]. 应用生态学报, 2004, 15(10): 1703-1710.
    [5]

    YU B Y, ZHANG W H, HE T, et al. Effects of forest gap size on the architecture of Quercus variabilis seedings on the south slope of Qinling Mountains, West China[J]. Chinese Journal of Applied Ecology, 2014, 25(12): 3399-3406.

    [6]

    COHEN W B, YANG Z, STEHMAN S V, et al. Forest disturbance across the conterminous United States from 1985—2012: the emerging dominance of forest decline[J]. Forest Ecology & Management, 2016, 360: 242-252.

    [6]

    WANG K Y. Processes of subalphine forest ecosystems in the West of Sichuan[M]. Chengdu: Sichuan Science & Technology Press, 2004.

    [7] 朱良军, 金光泽, 王晓春. 典型阔叶红松林干扰历史重建及干扰形成机制[J]. 植物生态学报, 2015, 39(2): 125-139.
    [7]

    ZHU L J. Gap disturbance history and climatic influence of a typical broad-leaved Pinus koraiensis forest in Xiaoxing'an Mountain [D]. Harbin: Northeast Forestry University, 2015.

    [8] 王一, 刘江, 张金鑫, 等. 辽东山区天然次生林两个不同坡向林窗光温空间分布特征[J]. 生态学杂志, 2015, 34(4): 933-940.
    [8]

    LI J W. Korean pine mixed forest ecology and management[M]. Harbin: Northeast Forestry University Press, 1997.

    [9] 周义贵, 郝凯婕, 李贤伟, 等. 林窗对米亚罗林区云杉低效林土壤有机碳和微生物生物量碳季节动态的影响[J]. 应用生态学报, 2014, 25(9): 2469-2476.
    [9]

    ZANG R G, LIU T, GUO Z L, et al. Gap disturbance regime in a broadleaved Korean pine forest in the Changbai Mountain Natural Reserve[J]. Chinese Journal of Plant Ecology, 1998, 22(2): 135-142.

    [10]

    TIAN Y Y. Gap features and regeneration in the broadleaved- Korean pine mixed forest of Xiaoxing'an Mountains[D]. Harbin: Northeast Forestry University, 2007.

    [10]

    WEBER T A, HART J L, SCHWEITZER C J, et al. Influence of gap-scale disturbance on developmental and successional pathways in Quercus-Pinus stands[J]. Forest Ecology & Management, 2014, 331: 60-70.

    [11]

    LIU S C, WANG J H, DUAN W B, et al. Gap characteristics in the mixed broad-leaved Korean pine forest in Xiaoxing'an Mountains[J]. Acta Ecologica Sinica, 2013, 33(17): 5234-5244.

    [11] 余碧云, 张文辉, 何婷, 等. 秦岭南坡林窗大小对栓皮栎实生苗构型的影响[J]. 应用生态学报, 2014, 25(12): 3399-3406.
    [12]

    ZANG R G, XU H C. Canopy disturbance regimes and gap regeneration in a Korena pine-broadleaved forest in Jiaohe, northeast China[J]. Bulletin of Botanical Research, 1999, 19(2): 112-120.

    [12]

    SCHLIEMANN S A, BOCKHEIM J G. Methods for studying treefall gaps: a review[J]. Forest Ecology & Management, 2011, 261(7): 1143-1151.

    [13]

    BUGMANN H. A review of forest gap models[J]. Climatic Change, 2001, 51(3-4): 259-305.

    [13]

    ZANG R G, LIU J Y, DONG D F. Gap dynamics and forest biodiversity[M]. Beijing: Chinese Forestry Press, 1999.

    [14]

    LIU S C, DUAN W B, ZHONG C Y, et al. Dynamic changes in soil temperature, water content, nutrition and microorganisms of different size gap in the mixed broadleaved Korean pine forest[J]. Journal of Soil and Water Conservation, 2012, 26(5): 78-83.

    [14] 王开运. 川西亚高山森林群落生态系统过程[J]. 成都:四川科学技术出版社, 2004.
    [15]

    MA L W, ZHANG W H, ZHOU J Y, et al. Effects of forest gap size on the growth of Quercus variabilis seedlings on north slopes of the Qinling mountains[J]. Scientia Silvae Sinicae, 2013, 49(12): 43-50.

    [15] 朱良军. 小兴安岭典型阔叶红松林林窗干扰历史及气候影响[D]. 哈尔滨:东北林业大学, 2015.
    [16] 李景文. 红松混交林生态与经营[M]. 哈尔滨: 东北林业大学出版社, 1997.
    [16]

    YAN E R, WANG X H, HUANG J J. Concept and classification of coarse woody debris in forest ecosystems[J]. Acta Ecologica Sinica, 2005, 25(1): 158-167.

    [17]

    ZANG R G, XU H C. Advances in forest gap disturbance research[J]. Scientia Silvae Sinicae, 1998, 34(1): 90-98.

    [17] 臧润国, 刘涛, 郭忠凌, 等. 长白山自然保护区阔叶红松林林隙干扰状况的研究[J]. 植物生态学报, 1998, 22(2): 135-142.
    [18] 田悦颖. 小兴安岭阔叶红松林林隙特征及其更新研究[D]. 哈尔滨: 东北林业大学, 2007.
    [18]

    XIAO S, WU F Z, YANG W Q, et al. Understory biomass and its characteristics as affected by forest gap in the alpine forest ecosystem in west Sichuan[J]. Ecology and Environmental Sciences, 2014, 23(9): 1515-1519.

    [19] 刘少冲, 王敬华, 段文标, 等. 小兴安岭阔叶红松混交林林隙特征[J]. 生态学报, 2013, 33(17): 5234-5244.
    [19]

    WANG L X, DUAN W B, CHEN L X, et al. Effects of gap size on the spatial heterogeneity of soil water in Pinus koraiensis dominated broad-leaved mixed forest[J]. Chinese Journal of Applied Ecology, 2013, 24(1): 17-24.

    [20] 臧润国, 徐化成. 蛟河阔叶红松林林冠干扰及林隙更新研究[J]. 植物研究, 1999, 19(2): 112-120.
    [20]

    ZHU J J, TAN H, LI F Q, et al. Comparison of near-ground air temperature and soil temperature of summer with in three gaps of different size at secondary forests in eastern montane regions of Liaoning Province[J]. Scientia Silvae Sinicae, 2009, 45(8): 161-165.

    [21]

    ZHU L J, YANG J W, ZHU C, et al. Influences of gap disturbance and warming on radial growth of Pinus koraiensis and Abies nephrolepis in Xiaoxing'an Mountain, Northeast China[J]. Chinese Journal of Ecology, 2015, 34(8): 2085-2095.

    [21] 臧润国, 刘静艳, 董大方. 林隙动态与森林生物多样性[M]. 北京: 中国林业出版社, 1999.
    [22]

    LONG C L, YU S X, WEI L M, et al. Disturbance regimes and the characteristics of gaps in Maolan Karst Forest, Guizhou Province[J]. Scientia Silvae Sinicae, 2005, 41(4): 13-19.

    [22]

    WILLIS J L, WALTERS M B, GOTTSCHALK K W. Scarification and gap size have interacting effects on northern temperate seedling establishment[J]. Forest Ecology & Management, 2015, 347: 237-247.

    [23] 刘少冲, 段文标, 钟春艳, 等. 阔叶红松林不同大小林隙土壤温度、水分、养分及微生物动态变化[J]. 水土保持学报, 2012, 26(5): 78-83.
    [24] 马莉薇, 张文辉, 周建云, 等. 秦岭北坡林窗大小对栓皮栎实生幼苗生长发育的影响[J]. 林业科学, 2013, 49(12): 43-50.
    [25]

    PIAO S L, CIAIS P, HUANG Y, et al. The impacts of climate change on water resources and agriculture in China[J]. Nature, 2010, 467: 43-51.

    [26] 闫恩荣, 王希华, 黄建军. 森林粗死木质残体的概念及其分类[J]. 生态学报, 2005, 25(1): 158-167.
    [27]

    STOKES M A. An introduction to tree-ring dating[M]. Tucson: University of Arizona Press, 1996.

    [28]

    HOLMES R L. Computer-assisted quality control in tree-ring dating and measurement[J]. Tree-Ring Bulletin, 1983, 43(1): 69-78.

    [29] 臧润国, 徐化成. 林隙(GAP)干扰研究进展[J]. 林业科学, 1998, 34(1): 90-98.
    [30] 肖洒, 吴福忠, 杨万勤, 等. 川西高山森林生态系统林下生物量及其随林窗的变化特征[J]. 生态环境学报, 2014, 23(9): 1515-1519.
    [31] 王丽霞, 段文标, 陈立新, 等. 红松阔叶混交林林隙大小对土壤水分空间异质性的影响[J]. 应用生态学报, 2013, 24(1): 17-24.
    [32] 朱教君, 谭辉, 李凤芹, 等. 辽东山区次生林3种大小林窗夏季近地面气温及土壤温度比较[J]. 林业科学, 2009, 45(8): 161-165.
    [33] 朱良军, 杨婧雯, 朱辰, 等. 林隙干扰和升温对小兴安岭红松和臭冷杉径向生长的影响[J]. 生态学杂志, 2015, 34(8): 304-309.
    [34] 龙翠玲, 余世孝, 魏鲁明, 等. 茂兰喀斯特森林干扰状况与林隙特征[J]. 林业科学, 2005, 41(4): 13-19.
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  2165
  • HTML全文浏览量:  345
  • PDF下载量:  26
  • 被引次数: 1
出版历程
  • 收稿日期:  2015-12-01
  • 修回日期:  2015-12-01
  • 发布日期:  2016-06-29

目录

/

返回文章
返回