Effects of nitrogen deposition and drought on litter decomposition in a temperate forest
-
摘要: 氮沉降和降水减少耦合作用对我国北温带森林凋落物分解的影响还知之甚少,通过常规的凋落物分解袋法进行了对照(CK)、施氮(N, 50 kg/(hm·a))、降雨减少(RP,-30%)和降雨减少加施氮(RP+N)4个处理对长白山阔叶红松林主要树种叶凋落物分解和碳、氮元素动态影响的研究。结果表明:凋落物分解95%需要6.025~15.167年,椴树的分解速率最快,其次是蒙古栎,红松最慢,三者混合后分解率介于期间。分解系数结果显示:施氮能在一定程度上促进紫椴叶凋落物的分解, 施氮对红松凋落物和混合凋落物分解则表现出抑制作用, 降雨减少对分解表现为明显的抑制作用,干旱情况下施氮后4种凋落物的分解系数介乎氮沉降和降雨减少两者之间,说明氮沉降和降雨减少存在交互作用。总体看来,氮沉降对凋落物分解和氮元素含量有一定的影响,并且与分解阶段和凋落物种类有关,降水减少对凋落物分解和碳氮元素比值具有显著的抑制作用。Abstract: To study the responses of nitrogen (N) deposition and drought on litter decomposition, we conducted an in situ experiment in a broadleaf-Korean pine mixed forest in Changbai Mountains by using litterbag technique. Four treatments were installed, i.e., null level of N (CK), N addition (N, 50 kg N/(ha·a)), precipitation reduction (RP, -30%) and precipitation reduction combined with N addition (RP+N). The results showed that it would take 6.025 to 15.167 years to decompose 95% of mass of litter used. Among the tree species, Tilia amurensis (TA) had the highest decomposition rate, followed by Quercus mongolica (MQ), and Pinus koraiensis (PK) showed the lowest decomposition rate. After 92 d and 154 d, although the litter decomposition rate with N addition was higher than those with CK, no significant difference was found, whereas the decomposition rate of litter in RP and RP+N treatments was significantly lower than that of CK (P<, 0.05). But after 365 d and 457 d, the differences between RP, RP+N and CK were also significant. Compared with CK, N and drought treatments had a 42.64%-51.01% decrease of litter C/N ratio. As a whole, N deposition had no significant effects on litter decomposition and C and N concentration, but RP and RP+N significantly inhibited the litter decomposition, and C and N release.
-
-
[1] FANG H, MO J M. Effect of nitrogen deposition on forest litter decomposition [J]. Acta Ecologica Sinica, 2006, 26(9): 3127-3136.
[1] SEDJO R A. The carbon cycle and global forest ecosystem [J]. Water Air and Soil Pollution, 1993, 70: 295-307.
[2] ZUO H C, L S H, HU Y Q. Variations trend of yearly mean air temperature and precipitation in China in the last 50 years [J]. Plateau Meteorology, 2004, 23(2): 238-244.
[2] CHRISTOPHER S. Terrestrial biomass and effect of deforestation on the globe carbon cycle [J]. Bioscience, 1999, 49: 769-778.
[3] MELILLO J M, ABER J D, MERATORE J F. Nitrogen and lignin control of hardwood leaf litter decomposition dynamics [J]. Ecology, 1982, 63: 621-626.
[3] MO J M, XUE J H, FANG Y T. Litter decomposition and its responses to simulated N depositionforthemajor plants of Dinshushan forests in subtropical China [J]. Acta Ecologica Sinica, 2004, 24(7):1413-1420.
[4] LIAO L P, GAO H, WANG S L. The effect of nitrogen addition on soil nutrient leaching and the decomposition of Chinese fir leaf litter [J]. Acta Phytoecologica Sinica, 2000, 24(1): 34-39.
[4] 方华, 莫江明. 氮沉降对森林凋落物分解的影响[J]. 生态学报, 2006, 26(9): 3127-3136. [5] KAISER J. The other global pollutant: nitrogen proves tough to curb [J]. Science, 2001, 294: 1268-1269.
[5] XIANG W H, YAN W D, TIAN D L, et al. Effects of nitrogen addition and mixture with understory plant leaves on decompositions and nitrogen releases of Chinese fir needle litter [J]. Scientia Silvae Sinicae, 2005, 4l(6): 1-6.
[6] SONG X G, HU T X, XIAN J R, et al. Reponses of litter deomposition and nitrogen release to simulated nitrogen deposition in an evergreen broad-leaved forest in southwesten Sichuan [J]. Chinese Journal of Applied Ecology, 2007, 18(10):2167-2172.
[6] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past,present and future [J]. Biogeochemistry, 2007, 20: 153-226.
[7] LI X F, HAN S J, ZHANG Y. Indirect effects of precipitation on litter decomposition of Quercus mongolica [J]. Chinese Journal of Applied Ecology, 2007, 18(2):261-266.
[7] DENG X W, LIN Y, HAN S J. Carbon and nitrogen dynamics in early stages of forest litter decomposition as affected by nitrogen addition [J]. Journal of Forestry Research, 2009, 20(2): 111-116.
[8] LI X F, ZHANG Y, NIU L J, et al. Litter decomposition process in the oure brich (Betula platyphlla) forest and the brich and poplar (Populus davidiana) mixed forest [J]. Acta Ecologica Sinica, 2007, 27(5):1782-1790.
[8] VESTGARDEN L S. Carbon and N turnover in the early stage of Scots pine (Pinus sylvestris L.) needle litter decomposition: effects of internal and external N [J]. Soil Biology and Biochemistry, 2001, 33: 465-474.
[9] LI X F, HAN S J, HU Y L, et al. Decomposition of litter organic matter and its relation to C, N and P release in secondary conifer and broadleaf mixed forest in Changbai Mountains [J]. Chinese Journal of Applied Ecology, 2008, 19(2): 245-251.
[9] HOBBIE S E. Interactions between litter lignin and soil nitrogen availability during leaf litter decomposition in a Hawaiian montane forest [J]. Ecosystems, 2000, 3(5): 484-494.
[10] EDMONDS R L, THOMAS T B. Decomposition and nutrient release from green needles of western hemlock and Pacific silver fir in an old growth temperate rain forests, Olympic National Park Washington [J]. Canadian Journal of Botany, 1995, 25: 1049-1057.
[11] MAGILL A H, ABER J D. Long-term effects of experimental nitrogen additions on foliarlitter decay and humus formation in forest ecosystems [J]. Plant and Soil, 1998, 203(2): 301-311.
[12] KUPERMAN R G. Litter decomposition and nutrient dynamics in oak hichory forests along a historic gradient of nitrogen and sulfur deposition [J]. Soil Biology and Biochemistry, 1999, 31: 237-244.
[13] BERG B, JOHANSSON M B, MEENTEMEYER V. Litter decomposition in a transect of Norway spruce forests: substrate quality and climate contro1 [J]. Canadian Journal of Forest Research, 2000, 30: 1136-1l47.
[14] MANNING P, SAUNDERS M, RICHARD D, et al. Direct and indirect effects of nitrogen deposition on litter decomposition [J]. Soil Biology and Biochemistry, 2008, 40: 688-698.
[15] GUNDERSEN P. Effects of enhanced nitrogen deposition in a spruce forest at Klosterhede, Denmark, examined by moderate NH4NO3 addition [J]. Forest Ecology and Management, 1998, 101: 251-268.
[16] HOBBIE S E, VITOUSEK P M. Nutrient limitation of decomposition in Hawaiian forests [J]. Ecology, 2000, 81(7): 1867-1877.
[17] 左洪超,吕世华,胡隐樵. 中国近50年气温及降水量的变化趋势分析[J]. 高原气象, 2004, 23(2): 238-244. [18] WILLCOCK J, MAGAN N. Impact of environmental factors on fungal respiration and dry matter losses in wheat straw [J]. Journal of Stored Products Research, 2001, 37: 35-45.
[19] WIEDER W R, CLEVELAND C C, TOWNSEND A R, et al. Controls over leaf litter decomposition in wet tropical forests [J]. Ecology, 2009, 90(12): 3333-3341.
[20] YAHDJIAN L, SALA O, AUSTIN A. Differential controls of water input on litter decomposition and nitrogen dynamics in the patagonian steppe [J]. Ecosystems, 2006, 9 (1):128-141.
[21] ZHENG J Q, HAN S J, WANG Y, et al. Composition and function of microbial communities during the early decomposition stages of foliar litters exposed to elevated CO2 concentrations[J]. European Journal of Soil Science, 2010, 61: 914-925.
[22] CARREIRO M M, SINSABAUGH R L, REPERT D A, et al. Microbial enzyme shifts explain litter decay-responses to simulated N deposition[J]. Ecology, 2000,81(9):2359-2365.
[23] 莫江明, 薛璟花, 方运霆. 鼎湖山主要森林植物凋落物分解及其对N沉降的响应[J]. 生态学报, 2004, 24(7): 1413-1420. [24] 廖利平, 高洪, 汪思龙, 等. 外加氮源对杉木叶凋落物分解及土壤养分淋失的影响[J]. 植物生态学报, 2000, 24(1): 34-39. [25] 项文化, 闫文德, 田大伦,等. 外加氮源及与林下植物叶混合对杉木林针叶分解和养分释放的影响[J]. 林业科学, 2005, 4l(6): 1-6. [26] MAGILL A H, ABER J D. Dissolved organic carbon and nitrogen relationships in forest litter as affected by nitrogen deposition [J]. Soil Biology and Biochemistry, 2000, 32(5):603-613.
[27] 宋学贵, 胡庭兴, 鲜骏仁, 等. 川西南常绿阔叶林凋落物分解及养分释放对模拟氮沉降的响应[J]. 应用生态学报, 2007, 18(10):2167-2172. [28] BERG B, MATZNER E. Effect of N deposition on decomposition of plant litter and soil organic matter in forest systems [J]. Environmental Reviews, 1997, 5(1):1-25.
[29] OCONNELL A M. Decomposition and nutrient content of litter in a fertilized eucalypt forest [J]. Biology and Fertility of Soils, 1994, 17(2):159-166.
[30] 李雪峰, 韩士杰, 张岩. 降水量变化对蒙古栎落叶分解过程的间接影响[J]. 应用生态学报, 2007, 18(2):261-266. [31] HENDRICKS J J, WILSON C A, BORING L R. Foliar litter position and decomposition in a fire-maintained long leaf pine wiregrass ecosystem [J]. Canadian Journal of Forest Research, 2002, 32 (6):928-941.
[32] LIMPENS J, BERENDSE F. How litter quality affects mass loss and N loss from decomposing sphagnum [J]. Oikos, 2003, 103(3):537-547.
[33] HEIM A, FREY B. Early stage litter decomposition rates for Swiss forests [J]. Biogeochemistry, 2004, 70 (3):299-313.
[34] LEMMA B, NILSSON I, KLEJA D B, et al. Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia [J]. Soil Biology and Biochemistry, 2007, 39 (9):2317-2328.
[35] SALAH Y M S, SCHOLES M C. Effect of temperature and litter quality on decomposition rate of Pinus patula needle litter [J]. Procedia Environmental Sciences, 2011, 6:180-193.
[36] 李雪峰, 张岩, 牛丽君, 等. 长白山白桦(Betula platyphlla)纯林和白桦山杨(Populus davidiana)混交林凋落物的分解[J]. 生态学报, 2007, 27(5): 1782-1790. [37] 李雪峰, 韩士杰, 胡艳玲, 等. 长白山次生针阔混交林叶凋落物中有机物分解与碳、氮和磷释放的关系[J]. 应用生态学报, 2008, 19(2): 245-251. -
期刊类型引用(0)
其他类型引用(4)
计量
- 文章访问数: 1735
- HTML全文浏览量: 269
- PDF下载量: 40
- 被引次数: 4