Gene diversity and mating system of Pinus tabuliformis in finite population seed orchard.
-
摘要: 运用10对SSR引物对油松无性系种子园内3个配置区共63个无性系(无性系亲本之间有重复)及320个子代进行研究,选择第9配置区的亲子代群体进行固定配置与交配系统关系的研究。结果发现:有限种群固定配置油松种子园的无性系具有较高的遗传多样性,子代保留了亲本所有的等位基因,且子代群体的等位标记数多于亲本,说明子代与亲本具有同样高的遗传多样性,而且高于亲本;在分析第9配置区的交配系统时,在80%的置信度下,配置区内异交率达到了100%,这说明固定配置下油松种子园的交配系统以异交为主;邻居花粉距离(即距离小于7.07 m)传播的交配成功率为21.90%;传播距离40 m以内的交配成功率达到了71.43%,距离大于40 m的交配成功率达到了6.67%,说明固定配置区内的花粉空间传播范围比较均匀,花粉传播范围广泛。对于配置区间的基因交流研究,我们发现各配置区均有来自其他2个配置区不同程度上的花粉影响,说明各配置区间的基因交流相对充分。另外,我们发现种子园的外来花粉影响率达到了11.88%。Abstract: A total of 63 clone parents (there was repeat in the clonal parents) and 320 open-pollination progenies were identified by 10 polymorphic SSR loci from three configuration areas of a Pinus tabuliformis seed orchard. We chose the parent and progeny population of ninth configuration area as for our study on the relationship between fixed configuration and mating system. The results showed there was a high genetic diversity in the seed orchard, progeny population had all alleles detected in parent population, and even had some new alleles absent in parent population. In the analysis of the mating system at 80% confidence level, the exchange rate of the configuration area had reached 100%, indicating that most of the mating system of P. tabuliformis seed orchard was based on outcrossing under the fixed configuration. The average neighbor mating rate (7.07 m) was 21.90%; the rate within and beyond 40 m was 71.43% and 6.67%, respectively, indicating that the distribution of pollen in the fixed configuration was relatively uniform, and the range of pollen dispersal was widespread. As to the study of gene exchange between the configuration areas, we found that each of configuration area was affected by pollen from the other two configuration areas to different degrees, indicating that the gene exchange between each configuration area was relatively sufficient. In addition, we found the rate of contamination by pollen outside the seed orchard was as high as 11.88%.
-
Keywords:
- Pinus tabuliformis /
- clonal seed orchard /
- SSR /
- gene diversity /
- fixed configuration /
- mating system
-
-
[1] EL-KASSABY Y A, STOEHR M U, REID D, et al. Clonal-row versus random seed orchard designs: interior spruce mating system evaluation[J]. Canadian Journal of Forest Research, 2007, 37(3): 690-696.
[1] LEXER C, HEINZE B, GERBER S, et al. Microsatellite analysis of maternal half-sib families of Quercus robur, Pedunculate oak: inferring the number of pollen donors from the offspring[J]. Theoretical and Applied Genetics, 99(1): 185-191.
[2] 张春晓,李悦.油松同工酶位点选择研究[J].北京林业大学学报,1999,21(1):11-16. [3] ZHANG C X, LI Y. The choice of isozyme markers in Pinus tabulaeformis Carr[J]. Journal of Beijing Forestry University, 1999, 21(1):11-16.
[4] 张冬梅,李悦,沈熙环,等. 油松改良系统中的三种群体交配体系[J].北京林业大学学报,2000,22(5):11-18. [5] ZHANG D M, LI Y, SHEN X H, et al. A primary study on the mating system of three different populations within one improvement procedure of Pinus tabulaeformis Carr[J]. Journal of Beijing Forestry University, 2000, 22(5):11-18.
[6] ADAMS W T, HIPKINS V D, BURCZYK J, et al. Pollen contamination trends in a maturing Douglas-fir seed orchard[J]. Canadian Journal of Forest Research, 1997, 27: 131-134.
[7] 李明,王树香,高宝嘉.油松天然次生林居群遗传多样性及与产地地理气候因子的关联分析[J].生态学报,2013,33(12):3602-3610. [8] LI M, WANG S X, GAO B J. Analysis of genetic diversity of Chinese pine (Pinus tabulaeformis) natural secondary forest population and correlation with theirs habitat ecological factors[J]. Acta Ecological Sinical, 2013, 33(12):3602-3610.
[9] 罗兵,孙海燕,徐港明,等.SSR分子标记研究进展[J].安徽农业科学,2013,41(12):5210-5212,5246. [10] LUO B, SUN H Y, XU G M, et al. Research progress of SSR molecular marker[J]. Journal of Anhui Agricultural Sciences, 2013, 41(12): 5210-5212, 5246.
[11] 谭小梅,周志春,金国庆.马尾松二代种子园遗传多样性和交配系统分析[J].林业科学,2012,48(2):69-74. [12] TAN X M, ZHOU Z C, JIN G Q. Genetic diversity and mating system analysis of Pinus massoniana in a second-generation clonal seed orchard[J]. Scientia Silvae Sinicae, 2012,48(2):69-74.
[13] ASHLEY M V. Plant parentage, pollination, and dispersal: how DNA microsatellites have altered the landscape[J]. Critical Reviews in Plant Sciences, 2010, 29(3):148-161.
[14] LEONARDUZZI C, LEONARDI S, MENOZZI P, et al. Towards an optimal sampling effort for paternity analysis in forest trees: what do the raw numbers tell us?[J]. iForest, 2012, 5: 18-25.
[15] 龚佳.马尾松实生种子园遗传多样性研究[D].南京:南京林业大学,2007:21-26. [16] GONG J. Genetic diversity of a seed orchard in Pinus massoniana[D]. Nanjing: Nanjing Forestry University, 2007: 21-26.
[17] 张薇,龚佳,季孔庶.马尾松实生种子园遗传多样性分析[J].分子植物育种,2008,4(6):717-723. [18] ZHANG W, GONG J, JI K S. Genetic diversity for seedling orchard of Massons pine[J]. Molecular Plant Breeding, 2008, 4(6):717-723.
[19] 艾畅,徐立安,赖焕林,等.马尾松种子园的遗传多样性与父本分析[J].林业科学,2006,42(11):146-150. [20] AI C, XU L A,LAI H L, et al. Genetic diversity and paternity analysis of a seed orchard in Pinus massoniana[J]. Scientia Silvae Sinicae, 2006, 42(11):146-150.
[21] 王鹏良.马尾松无性系种子园多年分子代遗传多样性分析[D].南京:南京林业大学,2006:17-23. [22] WANG P L. Years of molecular generation of genetic diversity analysis of Pinus massoniana in a clonal seed orchard[D]. Nanjing: Nanjing Forestry University, 2006: 17-23.
[23] 李悦,张春晓.油松育种系统遗传多样性研究[J].北京林业大学学报,2000,22(1):12-19. [24] LI Y, ZHANG C X. Genetic diversity within a breeding system of Pinus tabulaeformis[J]. Journal of Beijing Forestry University, 2000, 22(1):12-19.
[25] FENG F J, ZHAO D, SUI X, et al. Study on mating system of Pinus koraiensis in natural population based on cpSSR technology[J]. Advanced Materials Research, 2011, 183-185:700-704.
[26] KORSHIKOVI I, DEMKOVICH A E. Genetic polymorphism of plus-tree clones and their seed progeny in the Scotch pine clone plantation[J]. Cytology and Genetics, 2010,44(1):28-36.
[27] 张华新,沈熙环.林木种子园生殖系统研究进展[J].林业科学,2002,38(2):129-134. [28] ZHANG H X, SHEN X H. Progress on reproductive system of forest seed orchard[J]. Scientia Silvae Sinicae, 2002, 38(2):129-134.
[29] WANG X R, TORIMARU T, LINDGREN D,et al. Marker-based parentage analysis facilitates low input breeding without breeding strategies for forest trees[J]. Tree Genetics Genomes, 2010,6(2):227-235.
[30] 张冬梅,孙佩光,沈熙环,等.油松种子园自由授粉与控制授粉种子父本分析[J].植物生态学报,2009,33 (2): 302-310. [31] ZHANG D M, SUN P G, SHEN X H, et al. Paternity analysis of open and control pollination seeds collected from a seed orchard of Pinus tabulaeformis[J]. Chinese Journal of Plant Ecology, 2009, 33(2):302-310.
[32] 张冬梅,杨娅,沈熙环,等.油松SSR-PCR引物筛选及反应体系的建立[J].北京林业大学学报,2007,29(2):13-17. [33] ZHANG D M, YANG Y, SHEN X H, et al. Selection of primers and establishment of SSR-PCR reaction system on Pinus tabulaeformis Carr[J]. Journal Of Beijing Forestry University, 2007,29(2):13-17.
[34] BURCZYK J, LEWANDOWSKI A, CHALUPKA W. Local pollen dispersal and distant gene flow in Norway spruce (Picea abies [L.] Karst.)[J]. Forest Ecology and Management, 2004, 197:39-48.
[35] LINDGREN D.Picea abies breeding in Sweden is based on clone testing[J]. Dendrobiology, 2009,61(Suppl.): 79-82.
[36] PLUESS A R, SORK V L, DOLAN B, et al. Short distance pollen movement in a wind-pollinated tree,Quercus lobata (Fagaceae)[J]. Forest Ecology and Management, 2009,258(5):735-744.
[37] AYAKO S, WANG X R, TAKESHI T, et al. Spatial variation in local pollen flow and mating success in a Picea abies clone archive and their implications for a novel breeding without breeding strategy[J]. Tree Genetic Genomes, 2011, 7(3):499-509.
[38] PAKKAD G, UENO S, YOSHIMARU H. Gene flow pattern and mating system in a small population of Quercus semiserrata Roxb. (Fagaceae)[J]. Forest Ecology and Management, 2008: 255(11):3819-3826.
[39] TORIMARU T, WANG X R, FRIES A, et al. Evaluation of pollen contamination in an advanced Scots pine seed orchard[J]. Silvae Genetica, 2009, 58(5-6):262-269.
-
期刊类型引用(8)
1. 蒋至立,耿兴敏,祝遵凌,圣倩倩. 牡丹杂交育种研究进展. 分子植物育种. 2023(02): 602-619 . 百度学术
2. 刘玉菡,陶宁,王庆国,李清清. 番茄中ABC转运蛋白SlABCG23调控茉莉酸信号途径. 园艺学报. 2023(03): 559-568 . 百度学术
3. 贺丹,尤啸龙,何松林,张明星,张佼蕊,华超,王政,刘艺平. 芍药胼胝质合成酶基因家族鉴定及PlCalS5功能分析. 中国农业科学. 2023(16): 3183-3198 . 百度学术
4. 袁雪,唐英,陈庭巧,郝津藜,袁涛. 紫牡丹杂交结实率的差异. 分子植物育种. 2021(17): 5782-5792 . 百度学术
5. 祁奇墨,孟凡志,国静,邢广萍,郭先锋. 4个芍药品种与3个牡丹品种的远缘杂交结实特性研究. 山东农业科学. 2020(03): 24-28 . 百度学术
6. 柴弋霞,胡希军,张冬林,刘晓玲,刘彩贤,金晓玲. 紫花含笑与含笑、深山含笑和阔瓣含笑杂交亲和性分析. 园艺学报. 2018(10): 1970-1978 . 百度学术
7. 刘改秀. 牡丹与芍药远缘杂交育种技术. 现代农业科技. 2017(02): 125-126 . 百度学术
8. 苏云凤,岳中辉. 被子植物花粉与柱头间信息传递研究进展. 生物学教学. 2017(07): 4-5 . 百度学术
其他类型引用(8)
计量
- 文章访问数: 1871
- HTML全文浏览量: 258
- PDF下载量: 29
- 被引次数: 16