Over-expression of RPEase gene promotes the growth and development of Arabidopsis thaliana
-
摘要: 卡尔文循环是光合作用CO2同化的重要途径,在植物生长发育过程中起着重要作用。磷酸核酮糖3-差向异构酶(RPEase:EC 5.1.3.1)是卡尔文循环再生阶段的一种重要酶类。本文从速生欧美杂交黑杨NE-19中克隆得到RPEase基因,构建植物表达载体,利用农杆菌花序侵染法转化野生型和突变体拟南芥,通过普通PCR检测和绿色荧光蛋白(GFP)观测进一步鉴定得到CaMV35S:PdRPE:GFP超表达株系,然后对野生型、超表达株系、突变体和回补株系的生理指标进行测定。结果显示,超表达株系RPEase活性显著升高(P<0.05)。在正常浇水的生长条件下,超表达株系相比于其他3个株系(野生型、突变体、回补株系),气孔数目减少,气孔变大,提高了植物的水分利用效率以及净光合速率,使得超表达株系有更好的生长优势,积累更多的淀粉。在10d的短期干旱条件下,超表达株系的净光合速率和水分利用效率依然显著高于其他3个株系(P<0.01)。因此,研究表明超表达RPEase基因会提高植物生物量的积累以及对短期干旱的抵抗能力。Abstract: The Calvin cycle is an irreplaceable pathway for photosynthetic organisms to assimilate CO2 from the air and therefore plays a crucial role in plant growth and development. The ribulose-phosphate 3-epimerase (RPEase: EC 5.1.3.1) is one of the integral enzymes in the Calvin cycle regeneration phase. In our study PdRPE gene was cloned from fast-growing hybrid poplar NE-19 (Populus nigra × (Populus deltoids × Populus nigra)), and then PdRPE was transformed into Arabidopsis thaliana by the floral dip method. Using PCR and Green Fluorescent Protein (GFP) detection methods, we obtained the CaMV35S:PdRPE:GFP transgenic plants. Then we validated the growth status and physiological indexes of wild type (Col-0), overexpressing (OxPdRPE), mutant (rpe) and complementary (rpe/PdRPE) lines. The results indicated that in overexpressing lines RPEase activity increased significantly (P<0.05). When well-watered, the overexpressing lines had lower leaf stomatal density, larger stomatal size, improved water use efficiency and higher net photosynthetic rate, showing a better growth condition and more starch accumulation. When exposed to 10 days of short-term drought, the net photosynthetic rate and water use efficiency of overexpressing lines were still significantly higher than those of the other three strains (P<0.01). Therefore, we reach the conclusion that over-expression of RPEase gene can promote the plant growth and development and enhance the resistance of short-duration drought in Arabidopsis thaliana.
-
Keywords:
- poplar /
- Calvin cycle /
- RPEase /
- growth /
- development /
- water use efficiency
-
-
[1] EDGERTON M D. Increasing crop productivity to meet global needs for feed, food, and fuel[J]. Plant Physiology, 2009, 149(1): 7-13.
[1] ZHAO F J, GAO R F,SHEN Y B, et al. A study on foliar carbon isotope composition(δ 13 C) and water use efficiency of different Populus deltoides clones under water stress[J]. Scientia Silvae Sinicae, 2005,41(1): 36-41.
[2] BLACK C C, BURRIS R H. CO 2 metabolism and plant productivity[M]. Baltimore: University Park Press, 1976: 31-41.
[2] SONG C P, WANG X L, ZHOU Y, et al. Plant physiology [M].5 ed. Beijing: Science Press, 2015.
[3] AND I E W, BERRY J A. Enzymatic regulation of photosynthetic CO 2 , fixation in C 3 plants[J]. Annual Review of Plant Physiology & Plant Molecular Biology, 2003, 39(1): 533-594.
[3] YANG J W, LIANG Z S, HAN R L, et al. Water use efficiency of four species under the different soil water content[J]. Journal of Northwest Forestry University, 2004, 19(1): 9-13.
[4] SERVAITES J C, GEIGER D R. Regulation of ribulose 1,5-bisphosphate carboxylase/oxygenaseby metabolites[J]. Journal of Experimental Botany, 1995, 46(290): 1277-1283.
[5] RAINES C A. The Calvin cycle revisited[J]. Photosynthesis Research, 2003, 75(1): 1-10.
[6] STIT M T, SCHULZE D. Does rubisco control the rate of photosynthesis and plant growth: an exercise in molecular ecophysiology[J]. Plant Cell & Environment, 1994, 17(5): 465-487.
[7] QUICK W P, STITT M. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with “antisense” rbcS 4: Impact on photosynthesis in conditions of altered nitrogen supply[J]. Planta, 1992, 188(1): 522-531.
[8] FICHTNER K, QUICK W P, SCHULZE E D, et al. Decreased ribulose-1,5-bisphosphate carboxylase-oxygenase in transgenic tobacco transformed with “antisense” rbcS 5: Relationship between photosynthetic rate, storage strategy, biomass allocation and vegetative plant growth at three different nitrogen supplies[J]. Planta, 1993, 190(1): 1-9.
[9] STITT M, LUNN J, USADEL B. Arabidopsis and primary photosynthetic metabolism-more than the icing on the cake[J]. The Plant Journal, 2010, 61(6): 1067-1091.
[10] BANKS F M, SCOLL S P, PARRY M A J, et al. Decrease in phosphoribulokinase activity by antisense RNA in transgenic tobacco: Relationship between photosynthesis, growth, and allocation at different nitrogen levels[J]. Plant Physiology, 1999,119(3): 1125-1136.
[11] HABASH D Z, PARRY M A J, PARMAR S, et al. The regulation of component processes of photosynthesis in transgenic tobacco with decreased phosphoribulokinase activity[J]. Photosynthesis Research, 1996, 49(2): 159-167.
[12] RAINES C A, HARRISON E P, OLCER H, et al. Investigating the role of the thiol-regulated enzyme sedoheptulose-1,7-bisphosphatase in the control of photosynthesis[J]. Physiologia Plantarum, 2000,110(3): 303-308.
[13] HARRISON E P, WILLINGHAM N M, LLOYD J C, et al. Reduced sedoheptulose-1,7-bisphosphatase levels in transgenic tobacco lead to decreased photosynthetic capacity and altered carbohydrate accumulation[J]. Planta, 1998, 204(1): 27-36.
[14] OLCERH H, LLOYD J C, RAINES C A. Photosynthetic capacity is differentially affected by reductions in sedoheptulose-1,7-bisphosphatase activity during leaf development in transgenic tobacco plants[J]. Plant Physiology, 2001, 125(2): 982-989.
[15] HARRISON E P, OLCER H, LLOYD J C, et al. Small decreases in SBPase cause a linear decline in the apparent RuBP regeneration rate, but do not affect Rubisco carboxylation capacity[J]. Journal of Experimental Botany, 2001, 52(362): 1779-1784.
[16] HAN X, TANG S, AN Y, et al. Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis [J]. Journal of Experimental Botany, 2013, 64(14): 4589-4601.
[17] BECHTOLD N, JOLIVET S, VOISIN R, et al. The endosperm and the embryo of Arabidopsis thaliana are independently transformed through infiltration by agrobacterium tumefaciens[J]. Transgenic Research, 2003, 12(4): 509-517.
[18] REEN D. Enzyme-linked immunosorbent assay (ELISA)[J]. Methods in Molecular Biology, 1998, 27(1): 816-819.
[19] CAO W, LIU J, HE X. Modulation of ethylene responses affects plant salt-stress responses[J]. Plant Physiology, 2007, 143(2): 707-719.
[20] 赵凤君, 高荣孚, 沈应柏, 等. 水分胁迫下美洲黑杨不同无性系间叶片 (δ 13 C) 和水分利用效率的研究[J]. 林业科学, 2005,41(1): 36-41. [21] SHUANG H, TENG Z, XIA X, et al. Genome-wide comparison of two poplar genotypes with different growth rates[J]. Plant Molecular Biology, 2011, 76(6): 575-591(17).
[22] 宋纯鹏, 王学路, 周云, 等. 植物生理学 [M]. 5版.北京:科学出版社, 2015. [23] 杨建伟, 梁宗锁, 韩蕊莲, 等. 不同土壤水分含量对4个树种WUE 的影响[J]. 西北林学院学报, 2004, 19(1): 9-13. [24] SLATYER R O. Efficiency of water utilization by arid zone vegetation[J]. Annals of Arid Zone, 1964, 3: 1-12.
[25] SINCLAIR T R, TANNER C B, BENNETT J M. Water-use efficiency in crop production[J]. Bioscience, 1984, 34(1): 36-40.
[26] TIMOTHY D A, LEE H, FRANKS P J, et al. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth CO 2 gradient[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2012, 367(1588): 547-55.
[27] BACSO R, JANDA T, GALIBA G, et al. Restricted transpiration may not result in improved drought tolerance in a competitive environment for water[J]. Plant Science, 2008, 174(2): 200-204.
[28] FARQUHAR G D, SHARKEY T D. Stomatal Conductance and Photosynthesis[J]. Annual Reviews of Plant Physiology, 2003, 33(4): 317-345.
[29] MIYAGAWA Y, TAMOI M, SHIGEOKA S. Overexpression of a cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase in tobacco enhances photosynthesis and growth[J]. Nature Biotechnology, 2001, 19(10): 965-969.
[30] STEPHANE L, TRACY L, ZAKHLENIUK O V, et al. Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development[J]. Plant Physiology, 2005, 138(1): 451-460.
[31] FENG L, HAN Y, LIU G, et al. Overexpression of sedoheptulose-1,7-bisphosphatase enhances photosynthesis and growth under salt stress in transgenic rice plants[J]. Functional Plant Biology, 2007, 34(9): 822-834.
[32] FENG L, WANG K, LI Y, et al. Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. [J]. Plant Cell Reports, 2007, 26(9): 1635-1646.
[33] SRERE P A. The infrastructure of the mitochondrial matrix[J]. Trends in Biochemical Sciences, 1980, 5(5): 120-121.
[34] OVADI J. Old pathway-new concept: control of glycolysis by metabolite-modulated dynamic enzyme associations.[J]. Trends in Biochemical Sciences, 1988, 13(12): 486-490.
[35] KELETI T, OVADI J, BATKE J. Kinetic and physico-chemical analysis of enzyme complexes and their possible role in the control of metabolism.[J]. Progress in Biophysics & Molecular Biology, 1989, 53(2): 105-152.
[36] NOORT V, WILDMAN S G. Proteins of green leaves. ix. Enzymatic properties of fraction-I protein isolated by a specific antibody[J]. Biochimica et Biophysica Acta, 1964, 90: 309-17.
[37] MENDIOLA L, AKAZAWA T. Partial purification and the enzymatic nature of fraction I protein of rice leaves[J]. Biochemistry, 1964, 3(2): 174-179.
-
期刊类型引用(3)
1. 李婧,左欣欣,赵培伶,张陆玉,徐文鸾,张徐杨,倪德江,王明乐. 茶树高亲和硝酸盐转运蛋白家族基因NRT2的鉴定与表达. 应用与环境生物学报. 2022(01): 50-56 . 百度学术
2. 杨利艳,高源,朱满喜,邓妍,王创云. 藜麦NRT2基因家族的鉴定及表达分析. 华北农学报. 2022(S1): 8-18 . 百度学术
3. 张云,赵艳菲,王雅平,牟彬,张嘉越,马浩然,韩玉珠. 延薯4号马铃薯对氮素的生理生化响应及转录组分析. 广东农业科学. 2021(02): 56-66 . 百度学术
其他类型引用(1)
计量
- 文章访问数: 1972
- HTML全文浏览量: 178
- PDF下载量: 22
- 被引次数: 4