高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

径流曲线数(SCS-CN)模型估算黄土高原小流域场降雨径流的改进

王红艳 张志强 查同刚 朱聿申 张建军 朱金兆

王红艳, 张志强, 查同刚, 朱聿申, 张建军, 朱金兆. 径流曲线数(SCS-CN)模型估算黄土高原小流域场降雨径流的改进[J]. 北京林业大学学报, 2016, 38(8): 71-79. doi: 10.13332/j.1000-1522.20150508
引用本文: 王红艳, 张志强, 查同刚, 朱聿申, 张建军, 朱金兆. 径流曲线数(SCS-CN)模型估算黄土高原小流域场降雨径流的改进[J]. 北京林业大学学报, 2016, 38(8): 71-79. doi: 10.13332/j.1000-1522.20150508
WANG Hong-yan, ZHANG Zhi-qiang, ZHA Tong-gang, ZHU Yu-shen, ZHANG Jian-jun, ZHU Jin-zhao.. Modification of SCS-CN model for estimating event rainfall runoff for small watersheds in the Loess Plateau, China.[J]. Journal of Beijing Forestry University, 2016, 38(8): 71-79. doi: 10.13332/j.1000-1522.20150508
Citation: WANG Hong-yan, ZHANG Zhi-qiang, ZHA Tong-gang, ZHU Yu-shen, ZHANG Jian-jun, ZHU Jin-zhao.. Modification of SCS-CN model for estimating event rainfall runoff for small watersheds in the Loess Plateau, China.[J]. Journal of Beijing Forestry University, 2016, 38(8): 71-79. doi: 10.13332/j.1000-1522.20150508

径流曲线数(SCS-CN)模型估算黄土高原小流域场降雨径流的改进

doi: 10.13332/j.1000-1522.20150508
基金项目: 

“十三五”国家科技支撑计划项目(2015BAD07B030303)。

详细信息
    作者简介:

    王红艳。主要研究方向:森林水文与流域管理。Email:501243477@qq.com地址:100083北京市海淀区清华东路35号北京林业大学水土保持学院。责任作者:张志强,教授,博士生导师。主要研究方向:森林水文、侵蚀控制与流域管理。Email:zhqzhang@bjfu.edu.cn地址:同上。

    王红艳。主要研究方向:森林水文与流域管理。Email:501243477@qq.com地址:100083北京市海淀区清华东路35号北京林业大学水土保持学院。责任作者:张志强,教授,博士生导师。主要研究方向:森林水文、侵蚀控制与流域管理。Email:zhqzhang@bjfu.edu.cn地址:同上。

Modification of SCS-CN model for estimating event rainfall runoff for small watersheds in the Loess Plateau, China.

  • 摘要: 径流曲线数(SCS-CN)是预测场降雨地表径流常用的水文模型之一,由于其基本假设合理、参数易于获得而被广泛应用。然而,由于流域径流的形成受广泛存在空间或时间异质性的地形、地貌、土壤、气象、植被以及土地利用等多种因素的影响,按照标准径流曲线数模型估算的场降雨径流与实测径流相差可能很大。因此,针对特定区域、特定流域对该模型进行相应的修正是提高其径流预测精度的有效途径。本文于晋西黄土区吉县蔡家川分别以农田草地、人工林和次生林为主的3个典型小流域为对象,将2004—2011年实测的场降雨径流数据分为模型参数率定期(2004—2009年)和验证期(2010—2011年),对比标准SCS-CN模型和修正的SCS-CN模型(包括降雨量修正,降雨量与降雨强度修正,降雨量、降雨强度和初损率优化修正)预测场降雨径流的可靠性。结果表明:1)标准SCS-CN预测小流域场降水径流时,精度极差,模型拟合效率系数(E)均小于0;2)采用降雨量修正CN值预测流域地表径流精度优于标准模型,但对于小径流事件而言,预测结果会偏大,对于大径流事件,预测结果会偏小;3)基于优化降雨强度修正因子β和初损率λ模型可以提高以农田草地和人工林为主2个小流域的径流预测精度。对于以次生林为主的流域而言,仅通过降雨量修正CN值即可提高模型的预测精度,E可达0.79。反映流域储水特征的初损率λ,人工林为主的流域最小,为0.069,农田草地为主的流域次之,为0.189,次生林为主的流域,为0.200,表明次生林流域具有较好的储水效果。

     

  • [1] DESHMUKH D S, CHAUBE U C, EKUBE H A, et al. Estimation and comparision of curve numbers based on dynamic land use land cover change, observed rainfall-runoff data and land slope[J]. Journal of Hydrology,2013,492:89-101.
    [1] FU S H, LIU B Y, WU J D. Study on runoff calculation method in Beijing mountainous area[J]. Scientia Geographica Sinica, 2002,22(5):604-609.
    [2] XIAO B, WANG Q H, FAN J,et al. Application of the SCS-CN model to runoff estimation in a small watershed with high spatial heterogeneity[J]. Pedosphere, 2011,21(6):738-749.
    [2] ZHANG J J, NA L, DONG H B, et al. Hydrological response to changes in vegetation covers of small watersheds on the Loess Plateau[J]. Acta Ecological Sinica,2008,28(8):3597-3604.
    [3] ZHANG L, PODLASLY C, REN Y, et al. Separating the effects of changes in land management and climatic conditions on long-term streamflow trends analyzed for a small catchment in the Loess Plateau region, NW China[J]. Hydrological Processes, 2014,28(3):1284-1293.
    [3] ZHENG F, ZHANG J J. Analyses of rainfall-runoff relationship and water balance in Caijiachuan watershed[J]. Bulletin of Soil and Water Conservation,2012,32(1):71-76.
    [4] WANG Y, HUANG M B. Application of the SCS-CN method on runoff estimation in small watershed on Loess Plateau[J]. Science of Soil and Water Conservation,2008,6(6):87-91.
    [4] 符素华,刘宝元,吴敬东. 北京地区坡而径流计算模型的比较研究[J]. 地理科学,2002,22(5):604-609.
    [5] HE W, ZHANG J J, NA L, et al. Research on relationship between rainfall and runoff in different land use patterns on loess slope in west of Shanxi province[J]. Journal of Arid Land Resources and Environment,2007,5(27):80-87.
    [5] JUNG J W, YOON K S, CHOI D H, et al. Water management practices and SCS curve numbers of paddy fields equipped with surface drainage pipes[J]. Agricultural Water Management,2012,110:78-83.
    [6] REISTETTER J A, RUSSELL M. High-resolution land cover datasets, composite curve numbers, and storm water retention in the Tampa Bay, FL region[J]. Applied Geography,2011,31(2):740-747.
    [6] WANG W Z. Study on index of erosivity(R) of rainfall in loess area[J]. Soil and Water Conservation in China,1987(12):34-38.
    [7] KOUSARI M R, MALEKINEZHAD H, AHANI H, et al. Sensitivity analysis and impact quantification of the main factors affecting peak discharge in the SCS curve number method: an analysis of Iranian watersheds[J]. Quaternary International, 2010,226(1-2):66-74.
    [7] YU X X, ZHANG X M, WU S H, et al. The effect of vegetation and precipitation upon runoff and sediment production in sloping lands of loess area[J]. Journal of Mountain Science,2006,24(1):19-26.
    [8] ZHANG X Y, MENG F, DING N. Application of SCS model to estimating the quantity of runoff of small watershed in semi-arid or arid region[J]. Research of Soil and Water Conservation,2003,4(10):172-174.
    [8] MISHRA S K, SAHU R K, ELDHO T I, et al. An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology[J]. Water Resources Management, 2006,20(5): 643-660.
    [9] WANG B L. Study on the improved SCS model [J]. Yellow River,2005,5(27):24-26.
    [9] BOUGHTON W C. A review of the USDA SCS curve number method[J]. Soil and Water Management and Conservation,1989, 27 (5):11-23.
    [10] ZHANG Y X, MU X M, WANG F. Calibration and validation to parameter λ of soil conservation service curve number method in hilly region of the loess plateau[J]. Agricultural Research in the Arid Areas,2008,26(5):124-128.
    [10] MISHRA S K, SINGH V P, SANSALONE J, et al. A modified SCS-CN method: characterization and testing[J]. Water Resources Management,2003,17(1): 37-68.
    [11] HE B G, ZHOU N S, GAO X J, et al. Precipitation-runoff relationship in farmland nonpoint source pollution research: amending coeffcient of SCS hydrologic method[J]. Research of Environmental Sciences,2001,3(14):49-51.
    [11] BALTAS E A, DERVOS N A, MIMIKOU M A. Technical note: determination of the SCS initial abstraction ratio in an experimental watershed in Greece[J]. Hydrology and Earth System Sciences,2007,11(6):1825-1829.
    [12] MISHRA S K, SINGH V P. Validity and extension of the SCS-CN method for computing infiltration and rainfall-excess rates[J]. Hydrological Processes,2004,18(17): 3323-3345.
    [13] YUAN Y P, NIE W M, STEVEN C, et al. Initial abstraction and curve numbers for semiarid watersheds in southeastern Arizona[J]. Hydrological Processes,2014,28(3):774-783.
    [14] WANG S P, ZHANG Z Q, MCVICAR T R, et al. An event-based approach to understanding the hydrological impacts of different land uses in semi-arid catchments[J]. Journal of Hydrology, 2012,416-417:50-59.
    [15] 张建军,纳磊,董煌标,等. 黄土高原不同植被覆盖对流域水文的影响[J]. 生态学报,2008,28(8):3597-3604.
    [16] 郑芳,张建军. 蔡家川流域降雨-径流关系及水量平衡分析[J]. 水土保持通报,2012,32(1):71-76.
    [17] HAWKINS R H. Asymptotic determination runoff curve numbers from data[J]. Journal of Irrigation and Drainage Engineering,1993,119(2):334-345.
    [18] 王英,黄明斌. 径流曲线法在黄土区小流域地表径流预测中的初步应用[J]. 中国水土保持科学,2008,6(6):87-91.
    [19] 贺维,张建军,纳磊,等. 晋西黄土区不同土地利用类型降雨-径流关系的研究[J]. 干旱区资源与环境,2007,5(27):80-87.
    [20] 王万忠. 黄土地区降雨侵蚀力R指标的研究[J]. 中国水土保持,1987(12):34-38.
    [21] 余新晓,张晓明,武思宏,等. 黄土区林草植被与降水对坡面径流和侵蚀产沙的影响[J]. 山地学报,2006,24(1):19-26.
    [22] SAHU R K, MISHRA S K, ELDHO T I. Comparative evaluation of SCS-CN-inspired models in applications to classified datasets[J]. Agricultural Water Management, 2010,97(5):749-756.
    [23] 张秀英,孟飞,丁宁. SCS模型在干旱半干旱区小流域径流估算中的应用[J]. 水土保持研究,2003,4(10):172-174.
    [24] MISHRA S K, PANDEY R P, JAIN M K, et al. A rain duration and modified AMC-dependent SCS-CNProcedure for long duration rainfall-runoff events[J]. Water Resources Management,2008,22(7):861-876.
    [25] HUANG M B, GALLICHAND J, WANG Z, et al. A modification to the soil conservation service curve number method for steep slopes in the Loess Plateau of China[J]. Hydrological Processes,2006,20(3):579-589.
    [26] HUANG M B, GALLICHAND J, DONG C Y, et a1. Use of soil moisture and curve number method for estimating runoff in the Loess Plateau of China[J]. Hydrological Processes,2007,21:1471-1481.
    [27] JACOBS J, MYERS D, WHITFIELD B. Improved rainfall/runoff estimates using remotely sensed soil moisture[J]. Journal of the American Water Resources Association,2003,39:313-324.
    [28] 王白陆. SCS产流模型的改进[J]. 人民黄河,2005,5(27):24-26.
    [29] 张钰娴,穆兴民,王飞. 径流曲线数模型(SCS-CN)参数λ在黄土丘陵区的率定[J]. 干旱地区农业研究,2008,26(5):124-128.
    [30] 贺宝根,周乃晟,高效江,等. 农田非点源污染研究中的降雨径流关系-SCS法的修正[J]. 环境科学研究,2001,3(14):49-51.
    [31] SHI Z H, CHEN L D, FANG N F, et al. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China[J]. Catena,2009,77(1): 1-7.
    [32] ELHAKEEM M, PAPANICOLAOU A N. Estimation of the runoff curve number via direct rainfall simulator measurements in the state of iowa, USA[J]. Water Resources Management,2009,23(12):2455-2473.
  • 加载中
计量
  • 文章访问数:  1244
  • HTML全文浏览量:  178
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-12-28
  • 刊出日期:  2016-08-31

目录

    /

    返回文章
    返回