• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

拉萨半干旱河谷宜林地土壤水分时空分布格局

邱邦桂, 李永霞, 杨小林, 马和平

邱邦桂, 李永霞, 杨小林, 马和平. 拉萨半干旱河谷宜林地土壤水分时空分布格局[J]. 北京林业大学学报, 2016, 38(11): 9-15. DOI: 10.13332/j.1000-1522.20150515
引用本文: 邱邦桂, 李永霞, 杨小林, 马和平. 拉萨半干旱河谷宜林地土壤水分时空分布格局[J]. 北京林业大学学报, 2016, 38(11): 9-15. DOI: 10.13332/j.1000-1522.20150515
QIU Bang-gui, LI Yong-xia, YANG Xiao-lin, MA He-ping.. Distribution pattern of soil moisture space-time of forestland in semi-arid valley of Lhasa, southwestern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 9-15. DOI: 10.13332/j.1000-1522.20150515
Citation: QIU Bang-gui, LI Yong-xia, YANG Xiao-lin, MA He-ping.. Distribution pattern of soil moisture space-time of forestland in semi-arid valley of Lhasa, southwestern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 9-15. DOI: 10.13332/j.1000-1522.20150515

拉萨半干旱河谷宜林地土壤水分时空分布格局

基金项目: 

“十二五”国家科技支撑计划项目(2013BAC04B01)、国家自然科学基金项目(31460192)。

详细信息
    作者简介:

    邱邦桂。主要研究方向:植被恢复理论与技术。Email:574458272@qq.com 地址:860000 西藏自治区林芝市西藏农牧学院资源与环境学院。   责任作者: 杨小林,博士,教授。主要研究方向:森林培育、生物多样性保护。Email:xiaoliny66@126.com 地址:同上。

    邱邦桂。主要研究方向:植被恢复理论与技术。Email:574458272@qq.com 地址:860000 西藏自治区林芝市西藏农牧学院资源与环境学院。   责任作者: 杨小林,博士,教授。主要研究方向:森林培育、生物多样性保护。Email:xiaoliny66@126.com 地址:同上。

Distribution pattern of soil moisture space-time of forestland in semi-arid valley of Lhasa, southwestern China.

  • 摘要: 土壤水分是植被恢复的主要限制因子之一。本文选择拉萨半干旱河谷宜林地7个典型立地类型0~20 cm,20~40 cm,40~60 cm深度的土壤为研究对象,研究其土壤水分的变化规律,探讨拉萨半干旱河谷地区土壤水分时空分布格局。研究结果表明:不同立地类型的土壤水分变化走势大致相同,呈单峰状分布,土壤最低含水量与最高含水量分别出现在1月和8月,其变化范围在2.43%~30.03%之间;土壤含水量由高到低排序为:河滩地高水位阴坡上部阴坡下部河滩地低水位阳坡上部阶地阳坡下部;土壤水分时间格局总体上分为土壤水分积累期(6—9月)、土壤水分消耗期(10月至翌年1月)、土壤水分稳定期(2—5月)3个时期,土壤水分空间分布分为土壤水分速变层(0~20 cm)、土壤水分活跃层(20~40 cm)及土壤水分相对稳定层(40~60 cm)3层。本研究对该区植被建设具有一定的指导意义。
    Abstract: Soil moisture is one of the main limiting factors of vegetation restoration. As the research objects of seven typical site types which belong to the layers of 0-20 cm, 20-40 cm, 40-60 cm depth soil, the paper studies the change and pattern of space-time distribution of soil moisture in semi-arid valley of Lhasa, southwestern China. The results showed that the soil moisture changing trends of different site types were roughly same and the shape was unimodal distribution. The minimum and maximum water content occurred in January and August respectively, and its range was between 2.43%-30.03%. The order of soil water content from high to low was as follows: high water level of flood land upper part of shady slopelower part of shady slope low water level of flood land upper part of sunny slope terrace lower part of sunny slope. The time spatial pattern of soil moisture could be divided into three periods, ie soil water accumulation period (from June to September), soil water consumption period (from October to the January of next year) and soil water stationary period(from February to May). The space distribution of soil moisture could be divided into three layers, ie soil water comported layer (0-20 cm), soil water active layer (20-40 cm) and soil water relatively stable layer (40-60 cm). This conclusion has a certain guiding significance for the vegetation construction in this area.
  • [1] 李九一, 李丽娟. 中国水资源对区域社会经济发展的支撑能力[J]. 地理学报, 2012, 67(3): 410-419.
    [1]
    [2] 刘佳骏, 董锁成, 李泽红. 中国水资源承载力综合评价研究 [J]. 自然资源学报, 2011, 26(2): 258-269.
    [2]

    LI J Y, LI L J. Water resources supporting capacity to regional socio-economic development of China[J]. Acta Geographica Sinica, 2012, 67(3): 410-419.

    [3] 谢高地, 周海林, 鲁春霞, 等. 我国自然资源的承载力分析 [J]. 中国人口资源与环境, 2005, 15(5): 93-98.
    [3]

    LIU J J, DONG S C, LI Z H. Comprehensive evaluation of China's water resources carrying capacity[J]. Journal of Natural Resources, 2011, 26(2): 258-269.

    [4] 王安琪.大尺度被动微波辐射计土壤水分降尺度方法研究[D].北京:首都师范大学,2013.
    [4]

    XIE G D, ZHOU H L, LU C X, et al. Carrying capacity of natural resources in China[J]. China Population, Resources and Environment, 2005, 15(5): 93-98.

    [5]

    WANG A Q.A study on downscaling large-scale soil moisture using passive microwave radiometer[D].Beijing: Capital Normal University,2013.

    [5]

    GOMEZ-PLAZA A,MARINEZ-MENA M,ALBALADEJO J,et al.Factors regulating spatial distribution of soil water content in small semi-arid catchment[J].Journal of Hydrology,2001,253(1): 211-226.

    [6]

    SUN H, TANG Y, HUANG X J,et al. Present situations and its RD of dry valleys in the Hengduan Mountains of SW China[J]. World Science-Technology Research Development, 2005,27(3):54-61.

    [6] 孙辉, 唐亚, 黄雪菊, 等. 横断山区干旱河谷研究现状和发展方向[J].世界科技研究与发展,2005,27(3):54-61.
    [7]

    QIU B G, YANG X L. Analysis on soil bulk density of different site types in the sem-arid valley of of Lhasa[J].Hubei Forestry Science and Technology, 2015,44(6):24-27.

    [7] 邱邦桂,杨小林. 拉萨半干旱河谷不同立地类型土壤容重变化分析[J]. 湖北林业科技,2015,44(6):24-27.
    [8] 杨小林, 宫照红, 马和平.拉萨半干旱河谷砂生槐灌丛群落退化程度评价[J].西北林学院学报,2012,27(5):11-14.
    [8]

    YANG X L, GONG Z H, MA H P. Evaluation on the degradation of shrub community of Sophora moorcroftiana in semi-arid vally of Lhasa[J].Journal of Northwest Forestry University, 2012,27(5):11-14.

    [9]

    Comprehensive Scientific Expedition to the Qinghai Tibet Plateau. Tibet forest[M].Beijing: Science Press, 1985: 6-10.

    [9] 青藏高原综合科学考察队.西藏森林[M].北京:科学出版社, 1985: 6-10.
    [10] 寇韬. 拉萨半干旱河谷立地分类与评价[D].拉萨: 西藏大学,2010.
    [10]

    KOU T. The classification and evaluation of site conditions in Lhasa valley[D]. Lasa: Tibet University,2010.

    [11] 王兵,崔向慧,白秀兰,等. 荒漠化土壤水分空间根据及其动态规律研究[J].林业科学,2002, 15(2): 143-149.
    [11]

    WANG B,CUI X H,BAI X L, et al. Research on temporal and spatial patterns and dynamic laws of soil water content in desert area [J]. Forest Research, 2002, 15(2): 143-149.

    [12]

    YOU C B. Research on the vegetation and soil moisture of the distribution pattern in mountain forests: the arid valley of ecotone in the upper reach of Minjiang River[D]. Yaan:Sichuan Agricultural University, 2008.

    [12] 游传兵. 岷江上游山地森林—干旱河谷交错带植被与土壤水分分布格局研究[D].雅安:四川农业大学, 2008.
    [13] 黄奕龙, 陈利顶, 傅伯杰, 等. 黄土丘陵小流域土壤水分空间格局及其影响因素[J]. 自然资源学报,2005,20(4):483-492.
    [13]

    HUANG Y L, CHEN L D, FU B J,et al. Spatial pattern of soil moisture and its influencing factors in small watershed of Loess Hilly Region[J]. Journal of Natural Resources,2005,20(4):483-492.

    [14]

    SU Z L,ZHANG G H,YU Y. Variation of soil moisture with slope aspect and position in a small agricultural watershed in the typical black soil region[J]. Science of Soil and Water Conservation,2013,11(6):39-44.

    [14] 苏子龙,张光辉,于艳. 典型黑土地农业小流域不同坡向和坡位的土壤水分变化特征[J]. 中国水土保持科学, 2013,11(6):39-44.
    [15] 潘颜霞, 王新平. 荒漠人工植被区浅层土壤水分空间变化特征分析[J]. 中国沙漠,2007,27(2):250-256.
    [15]

    PAN Y X, WANG X P. Spatial variation characteristics of soil moisture in desert artificial vegetation area[J]. Journal of Desert Research,2007,27(2):250-256.

    [16] 朱首军, 丁艳芳, 薛泰谦. 土壤—植物—大气(SPAC)系统和农林复合系统水分运动研究综述[J]. 水土保持研究,2000,7(1):49-53.
    [16]

    ZHU S J, DING Y F, XUE T Q. Moisture movement literature on summarizing SPAC system and agri-forestry[J]. Research of Soil and Water Conservation,2000,7(1):49-53.

    [17] 周启友, 岛田纯. 土壤水空间分布结构的时间稳定性[J]. 土壤学报,2003,40(5):683-690.
    [17]

    ZHOU Q Y, DAO T C. Temporal stability of the spatial distribution pattern of soil water[J]. Acta Pedologica Sinica,2003,40(5):683-690.

  • 期刊类型引用(2)

    1. Heng Zhang,Shihao Ma,Ping Kang,Qiuliang Zhang,Zhiwei Wu. Spatial heterogeneity of dead fuel moisture content in a Larix gmelinii forest in Inner Mongolia using geostatistics. Journal of Forestry Research. 2021(02): 569-577 . 必应学术
    2. 臧建成,孙涛,洪大伟,杨小林. 拉萨半干旱河谷植被对地表节肢动物多样性的影响. 生态学报. 2018(22): 8205-8212 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  2239
  • HTML全文浏览量:  245
  • PDF下载量:  30
  • 被引次数: 4
出版历程
  • 收稿日期:  2015-12-27
  • 发布日期:  2016-11-29

目录

    /

    返回文章
    返回