• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

平欧杂交榛CBF/DREB1转录因子ChaCBF1基因的克隆与功能分析

雷恒久, 苏淑钗, 马履一, 马仲

雷恒久, 苏淑钗, 马履一, 马仲. 平欧杂交榛CBF/DREB1转录因子ChaCBF1基因的克隆与功能分析[J]. 北京林业大学学报, 2016, 38(10): 69-79. DOI: 10.13332/j.1000-1522.20150528
引用本文: 雷恒久, 苏淑钗, 马履一, 马仲. 平欧杂交榛CBF/DREB1转录因子ChaCBF1基因的克隆与功能分析[J]. 北京林业大学学报, 2016, 38(10): 69-79. DOI: 10.13332/j.1000-1522.20150528
LEI Heng-jiu, SU Shu-chai, MA Lü-yi, MA Zhong.. Cloning and functional analysis of ChaCBF1, a CBF/DREB1-like transcriptional factor from Corylus heterophylla × C. avellana.[J]. Journal of Beijing Forestry University, 2016, 38(10): 69-79. DOI: 10.13332/j.1000-1522.20150528
Citation: LEI Heng-jiu, SU Shu-chai, MA Lü-yi, MA Zhong.. Cloning and functional analysis of ChaCBF1, a CBF/DREB1-like transcriptional factor from Corylus heterophylla × C. avellana.[J]. Journal of Beijing Forestry University, 2016, 38(10): 69-79. DOI: 10.13332/j.1000-1522.20150528

平欧杂交榛CBF/DREB1转录因子ChaCBF1基因的克隆与功能分析

基金项目: 

国家林业局重点项目“榛子良种选育与栽培关键技术研究”(2011-03)。

详细信息
    作者简介:

    雷恒久,博士。主要研究方向:经济林栽培与分子生物学。Email: leihengjiu123@163.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院。
       责任作者: 苏淑钗,教授,博士生导师。主要研究方向:经济林栽培与育种。Email: sushuchai@sohu.com 地址:同上。

    雷恒久,博士。主要研究方向:经济林栽培与分子生物学。Email: leihengjiu123@163.com 地址:100083北京市海淀区清华东路35号北京林业大学林学院。
       责任作者: 苏淑钗,教授,博士生导师。主要研究方向:经济林栽培与育种。Email: sushuchai@sohu.com 地址:同上。

Cloning and functional analysis of ChaCBF1, a CBF/DREB1-like transcriptional factor from Corylus heterophylla × C. avellana.

  • 摘要: 为研究榛属植物的抗寒分子机理,以平欧杂交榛‘达维’为试材,采用同源克隆和RT-PCR技术克隆获得一个CBF/DREB1转录因子基因ChaCBF1,GenBank登录号为KT757373。该基因开放阅读框为666 bp,编码221个氨基酸,其相对分子质量为26.4 kDa,理论等电点为5.88。氨基酸序列比对结果显示ChaCBF1含有一个高度保守的AP2/ERF结构域,以及PKK/RPAGRxKFxETRHP和DSAWR等CBF蛋白特征序列。系统进化树分析发现ChaCBF1与垂枝桦BpCBF3蛋白的亲缘关系最近。通过基因枪轰击法使重组质粒p1302-ChaCBF1-GFP在洋葱表皮细胞瞬时表达,亚细胞定位结果显示ChaCBF1定位于洋葱表皮细胞的细胞核。通过实时荧光定量PCR检测了ChaCBF1基因在多种非生物胁迫下的表达模式,结果表明ChaCBF1基因的表达能够持续而强烈地响应低温信号,同时其表达也受干旱、高盐和ABA的诱导。通过农杆菌介导的花序侵染法将重组质粒p1301bar-ChaCBF1转化野生型拟南芥,对ChaCBF1基因的功能进行了研究。结果表明:过表达ChaCBF1的转基因拟南芥增强了对冷冻胁迫的耐受性,其成活率显著高于对照植株;转基因植株在正常和低温条件下能够显著上调冷响应基因RD29A和COR47的表达,并积累较高水平的游离脯氨酸和可溶性糖等渗透调节物质,从而提高其抗寒能力。研究结果表明,转录因子ChaCBF1基因在杂交榛冷响应途径中发挥重要作用。
    Abstract: To investigate the molecular mechanisms of cold-resistance of Corylus plants, a CBF/DREB1-like transcription factor gene, designated as ChaCBF1 with the GenBank accession number of KT757373, was cloned using homology-based cloning and reverse transcription-PCR (RT-PCR) from hybrid hazelnut ‘Dawei’ (C. heterophylla × C.avellana). The open reading frame of ChaCBF1 was 666 bp, encoding a protein of 221 amino acids, with a molecular mass of 26.4 kDa and a theoretical isoelectric point of 5.88. The amino acids sequence alignment showed that the ChaCBF1 protein contained a highly conserved AP2/ERF domain. In addition, ChaCBF1 also contained PKK/RPAGRxKFxETRHP and DSAWR motifs, which are signature sequences of CBF proteins. The recombinant plasmid p1302-ChaCBF1-GFP was transiently expressed into onion epidermal cells by particle bombardment method via a gene gun,and subcellular localization analysis revealed that ChaCBF1 protein mainly localized into the nucleus of onion epidermal cells. The expression patterns of ChaCBF1 under various abiotic stress conditions were determined using quantitative real-time PCR. The results showed that the expression of ChaCBF1 was strongly and constantly induced by low temperature, and also in response to drought, salt and ABA signals. To elucidate the function of ChaCBF1, the fusion construct p1301bar-ChaCBF1 was introduced into wild type Arabidopsis by Agrobacterium-mediated transformation using the floral-dip method. The results revealed that the transgenic Arabidopsis overexpressing ChaCBF1 enhanced tolerance to freezing treatment, and had significantly higher survival rates than wild-type plants. The expression of cold-regulated genes RD29A and COR47 were significantly upregulated and the contents of free proline and soluble sugars were also increased in transgenic plants under normal or low temperature conditions, and resulted in increased tolerance to cold. These results indicated that ChaCBF1 functions as a transcription factor and play crucial roles in cold-response pathway of hybrid hazelnut.
  • [1]

    ZHENG W J. Records of Chinese trees[M]. Beijing:China Forestry Publishing House, 1998.

    [1] 郑万钧.中国树木志[M]. 北京:中国林业出版社, 1998.
    [2]

    CHEN X,WANG G X,LIANG L S, et al. Cloning and temporal-spatial expression of a CBF homolog associated with cold acclimation from Corylus heterophylla[J]. Scientia Silvae Sinicae,2012,48(1):167-172.

    [2] 陈新,王贵禧,梁丽松,等.平榛冷适应相关基因CBF的克隆及时空表达特性分析[J]. 林业科学,2012, 48(1):167-172.
    [3] 李凤光,娄汉平,高丹,等.平欧杂交榛引种初报[J]. 北方园艺,2009, 33(4):91-92.
    [3]

    LI F G, LOU H P, GAO D, et al. Preliminary study on introducing of hybrid hazel[J]. Northern Horticulture, 2009, 33(4):91-92.

    [4] 李春牛,董凤祥,王贵禧,等.平欧杂交榛抗抽条能力及抽条临界含水量研究[J]. 林业科学研究,2010,23(3):330-335.
    [4]

    LI C N,DONG F X,WANG G X, et al. Study on the tolerance and critical water capacity of shoot shriveling in hybrid hazelnuts[J]. Forest Research,2010,23(3):330-335.

    [5] 赵爽,苏淑钗,张兵,等.河北省平泉县平欧杂交榛越冬性研究[J]. 中南林业科技大学学报,2015,35(4):33-39.
    [5]

    ZHAO S,SU S C,ZHANG B, et al. Study on over-wintering survival rate of Corylus heterophylla × C.avellana in Pingquan, Hebei Province[J]. Journal of Central South University of Forestry Technology, 2015,35(4):33-39.

    [6] 陈新,王贵禧,徐丽,等.榛子甜菜碱醛脱氢酶基因BADH的克隆及在越冬过程中的表达特性分析[J]. 山东农业科学,2013,45(5):6-12.
    [6]

    CHEN X,WANG G X,XU L,et al. Cloning and expression analysis of betaine aldehyde dehydrogenase BADH gene from hzaelnut(Corylus heterophylla Fisch.) during overwintering period[J]. Shandong Agricultural Sciences,2013,45(5):6-12.

    [7]

    QIN F,SHINOZAKI K,YAMAGUCHI-SHINOZAKI K. Achievements and challenges in understanding plant abiotic stress responses and tolerance[J]. Plant Cell Physiology,2011,52(9):1569-1582.

    [7]

    SONG C N,QIAN J L,FANG J G,et al. Cloning, subcellular localization and expression analysis of SPL9 and SPL13 genes from Poncirus trifoliata[J]. Scientia Agricultura Sinica,2010,43(10):2105-2114.

    [8]

    ZHAO S J,SHI G A,DONG X C. Techniques of plant physiological experiment[M]. Beijing:Agricultural Scientific and Technical Press of China, 2002.

    [8]

    STOCKINGER E J,GILMOUR S J,THOMASHOW M F. Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit[J]. Proceeding of the National Academy of Sciences of the United States of America,1997,94(3):1035-1040.

    [9]

    PAN X W,LI Y C,LI X X. Differential regulatory mechanism of CBF regulon between Nipponbare(japonica) and 93-11(Indica) during cold acclimation[J]. Chinese Journal of Rice Science,2012,26(5):521-528.

    [9]

    LIU Q,KASUGA M,SAKUMA Y,et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought-and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. The Plant Cell,1998,10(8):1391-1406.

    [10]

    WEI J Y,ZHAO J,ZHAO S Q. Activation and regulation on the cold response pathway of ICE1-CBF in plants[J]. Biotechnology Bulletin,2015,31(6):8-12.

    [10]

    SAKUMA Y,LIU Q,DUBOUZET J G, et al. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration-and cold-inducible gene expression[J]. Biochemical Biophysical Research Communications,2002, 290(3):998-1009.

    [11]

    DUBOUZET J G,SAKUMA Y,ITO Y, et al. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt-and cold-responsive gene expression[J]. The Plant Journal,2003,33(4):751-763.

    [12]

    QIN F,SAKUMA Y,LI J, et al. Cloning and functional analysis of a novel DREB1/CBF transcription factor involved in cold-responsive gene expression in Zea mays L.[J]. Plant Cell Physiology, 2004,45(8):1042-1052.

    [13]

    YANG W,LIU X D,CHI X J,et al. Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways[J]. Planta,2011,233(2):219-229.

    [14]

    KITASHIBA H,ISHIZAKA T,ISUZUGAWA K, et al. Expression of a sweet cherry DREB1/CBF ortholog in Arabidopsis confers salt and freezing tolerance[J]. Journal of Plant Physiology,2004,161(10):1171-1176.

    [15]

    NAVARRO M,AYAX C,MARTINEZ Y, et al. Two EguCBF1 genes overexpressed in Eucalyptus display a different impact on stress tolerance and plant development[J]. Plant Biotechnology Journal, 2011,9(1):50-63.

    [16]

    WELLING A,PALVA E T. Involvement of CBF transcription factors in winter hardiness in birch[J]. Plant Physiology, 2008,147(3):1199-1211.

    [17]

    WANG Z L,LIU J,GUO H Y, et al. Characterization of two highly similar CBF/DREB1-like genes, PhCBF4a and PhCBF4b, in Populus hopeiensis[J]. Plant Physiology and Biochemistry,2014,83:107-116.

    [18]

    BENEDICT C,SKINNER J S,MENG R, et al. The CBF1-dependent low temperature signaling pathway, regulon and increase in freeze tolerance are conserved in Populus spp.[J]. Plant, Cell Environment, 2006,29(7):1259-1272.

    [19]

    CHENG H,CAI H B,FU H T, et al. Functional characterization of Hevea brasiliensis CRT/DRE binding factor1 gene revealed regulation potential in the CBF pathway of tropical perennial tree[J/OL]. PLoS One,2015,10(9):e0137634. [2015-12-12]. http:∥dx.doi.org/ 10.1371/journal.pone.0137634. DOI: 10.1371/journal.pone.0137634.

    [20]

    MORRAN S,EINI O,PYVOVARENKO T, et al. Improvement of stress tolerance of wheat and barley by modulation of expression of DREB/CBF factors[J]. Plant Biotechnology Journal,2011,9(2):230-249.

    [21]

    CHANG S,PURYEAR J,CAIRNEY J. A simple and efficient method for isolating RNA from pine trees[J]. Plant Molecular Biology Reporter,1993,11(2):113-116.

    [22] 宋长年,钱剑林,房经贵,等. 枳SPL9和SPL13全长cDNA克隆、亚细胞定位和表达分析[J]. 中国农业科学,2010,43(10):2105-2114.
    [23]

    LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCt method[J]. Methods,2001, 25(4):402-408.

    [24]

    CLOUGH S J,BENT A F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. The Plant Journal,1998,16(6):735-743.

    [25]

    BATES L S,WALDREN R P,TEARE I D. Rapid determination of free proline for water-stress studies[J]. Plant and Soil,1973,39(1):205-207.

    [26] 赵世杰,史国安,董新纯.植物生理学实验指导[M]. 北京:中国农业科学技术出版社, 2002.
    [27]

    JAGLO K R,KLEFF S,AMUNDSEN K L, et al. Components of the Arabidopsis C-repeat/dehydration-responsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species[J]. Plant Physiology,2001,127(3):910-917.

    [28]

    XIONG Y W,FEI S Z. Functional and phylogenetic analysis of a DREB/CBF-like gene in perennial ryegrass(Lolium perenne L.)[J]. Planta,2006,224(4):878-888.

    [29]

    LI D F,ZHANG Y Q,HU X N,et al. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses[J]. BMC Plant Biology,2011,11:109.

    [30]

    CONG L,CHAI T Y,ZHANG Y X. Characterization of the novel gene BjDREB1B encoding a DRE-binding transcription factor from Brassica juncea L.[J]. Biochemistry Biophysical Research Communications,2008,371(4):702-706.

    [31]

    TONG Z,HONG B,YANG Y J, et al. Overexpression of two chrysanthemum DgDREB1 group genes causing delayed flowering or dwarfism in Arabidopsis[J]. Plant Molecular Biology,2009,71(1):115-129.

    [32]

    OAKENFULL R J,BAXTER R,KINGHT M R. A C-repeat binding factor transcriptional activator(CBF/DREB1) from European bilberry(Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana[J/OL]. PLoS One, 2013,8(1):e54119. [2015-12-13]. http:∥dx.doi.org/ 10.1371/journal.pone.0054119. DOI: 10.1371/journal.pone.0054119.

    [33]

    VOGEL J T,ZARKA D G,VAN BUSKIRK H A, et al. Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis[J]. The Plant Journal,2005,41(2):195-211.

    [34]

    ISHITANI M,MAJUMDER A L,BORNHOUSER A ,et al. Coordinate transcriptional induction of myo-inositol metabolism during environmental stress[J]. The Plant Journal,1996,9(4):537-548.

    [35]

    WANNER L A,JUNTTILA O. Cold-induced freezing tolerance in Arabidopsis[J]. Plant Physiology,1999,120(2):391-399.

    [36]

    TAJI T,OHSUMI C,IUCHI S, et al. Important roles of drought-and cold-inducible genes for galactinol synthase in stress tolerance in Arabidopsis thaliana[J]. The Plant Journal,2002,29(4):417-426.

    [37]

    NOMURA M,MURAMOTO Y,YASUDA S, et al. The accumulation of glycinebetaine during cold acclimation in early and late cultivars of barley[J]. Euphytica,1995,83(3):247-250.

    [38]

    ITO Y,KATSURA K,MARUYAMA K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice[J]. Plant Cell Physiology,2006,47(1):141-153.

    [39] 潘孝武,黎用朝,李小湘.CBF调节子在水稻品种日本晴和93-11低温驯化过程中的差异调控机制[J]. 中国水稻科学,2012,26(5):521-528.
    [40]

    ZHANG X,FOWLER S G,CHENG H, et al. Freezing-sensitive tomato has a functional CBF cold response pathway, but a CBF regulon that differs from that of freezing-tolerant Arabidopsis[J]. The Plant Journal,2004,39(6):905-919.

    [41] 魏俊燕,赵佳,赵仕琪. 植物ICE1-CBF冷反应通路的激活与调控研究进展[J]. 生物技术通报, 2015,31(6):8-12.
  • 期刊类型引用(5)

    1. 徐金生,姜礅,严善春. Cd胁迫对银中杨幼苗金属元素代谢及其氧化应激的影响. 安徽农业大学学报. 2023(06): 1000-1005 . 百度学术
    2. 单羽,任晓宁,李雪梅. 非生物胁迫对植物碳水化合物及其代谢相关酶影响的研究进展. 安徽农业科学. 2021(20): 6-9 . 百度学术
    3. 熊露露,卢囿佐,刘月炎,彭海兰,黄兴敏,王健健. 外源锌对氮胁迫下薏苡幼苗生长及抗氧化系统的影响. 中国农学通报. 2021(36): 24-29 . 百度学术
    4. 刘景华. 不同锌胁迫浓度下杨树生长以及生物量参数的变化. 林业科技通讯. 2020(07): 73-74 . 百度学术
    5. 王月月,董效文,姜礅,狄贵秋,王沫,刘晓霞,孟昭军,严善春. 镉、锌复合胁迫对银中杨化学防御的影响. 北京林业大学学报. 2019(06): 96-101 . 本站查看

    其他类型引用(5)

计量
  • 文章访问数:  1964
  • HTML全文浏览量:  204
  • PDF下载量:  52
  • 被引次数: 10
出版历程
  • 收稿日期:  2016-01-07
  • 发布日期:  2016-10-28

目录

    /

    返回文章
    返回