高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

红松树高-胸径的非线性混合效应模型研究

臧颢 雷相东 张会儒 李春明 卢军

臧颢, 雷相东, 张会儒, 李春明, 卢军. 红松树高-胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8-9. doi: 10.13332/j.1000-1522.20160008
引用本文: 臧颢, 雷相东, 张会儒, 李春明, 卢军. 红松树高-胸径的非线性混合效应模型研究[J]. 北京林业大学学报, 2016, 38(6): 8-9. doi: 10.13332/j.1000-1522.20160008
ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. doi: 10.13332/j.1000-1522.20160008
Citation: ZANG Hao, LEI Xiang-dong, ZHANG Hui-ru, LI Chun-ming, LU Jun. Nonlinear mixed-effects height-diameter model of Pinus koraiensis[J]. Journal of Beijing Forestry University, 2016, 38(6): 8-9. doi: 10.13332/j.1000-1522.20160008

红松树高-胸径的非线性混合效应模型研究

doi: 10.13332/j.1000-1522.20160008
基金项目: 

十二五”

国家科技支撑计划课题(2012BAD22B0201)

详细信息
    作者简介:

    臧颢。主要研究方向:森林生长模型。Email: b12345abba@163.com 地址:100091 北京市海淀区东小府1号中国林业科学研究院资源信息研究所。

    责任作者:

    雷相东,研究员,博士生导师。主要研究方向:森林生长模型。Email: xdlei@ifrit.ac.cn 地址:同上。

Nonlinear mixed-effects height-diameter model of Pinus koraiensis

  • 摘要: 以吉林省汪清林业局的蒙古栎阔叶混交林和云冷杉阔叶混交林24块固定样地中的2598株红松为研究对象,利用Chapman-Richards方程建立了不含随机效应与含随机效应的单木树高-胸径简单模型和广义模型。模型拟合和检验的评价指标主要包括调整决定系数(R2a)、平均相对误差绝对值(RMA)和均方根误差(RMSE)。对于混合效应模型,设计了随机抽取、抽胸径最大的树、抽胸径最小的树和抽平均木4种抽样方案计算随机参数,通过对比4种抽样设计下模型的误差统计量,分析了不同抽样设计下样本数量和预测精度的关系。结果表明:基于混合效应模型的红松单木树高-胸径模型拟合效果(简单模型的R2a在0.753~0.886之间,RMA在11.3%~15.1%之间,RMSE在1.38~2.01m之间;广义模型的R2a在0.754~0.886之间,RMA在11.1%~15.0%之间,RMSE在1.38~2.01m之间)优于不含随机参数的红松单木树高-胸径模型(简单模型的R2a在0.502~0.868之间,RMA在12.2%~17.8%之间,RMSE在1.42~2.65m之间;广义模型的R2a在0.711~0.877之间,RMA在11.6%~17.2%之间,RMSE在1.41~2.10m之间);包含随机效应的简单模型和广义模型拟合效果没有明显的差异,表明基于混合效应模型的单木树高-胸径简单模型可以很好地描述树高-胸径关系在不同森林类型、不同样地间的差异,因此不需要在树高-胸径模型中增加其他自变量;抽取平均木的抽样设计优于其他3种抽样设计,且抽取4株平均木时,预测精度提升最为明显,综合预测精度和调查成本的考虑,在实践中应用包含随机效应的红松树高-胸径模型时,推荐在样地中抽取4株平均木测量其树高来估计随机参数。

     

  • [1] AVERY T E, BURKHART H E. Forest measurements[M]. 5th ed. New York: McGraw-Hill, 2002: 313.
    [1] LU J, ZHANG H R, LEI X D, et al. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains[J]. Journal of Beijing Forestry University, 2015, 37(11):10-25.
    [2] MENG X Y. Forest mensuration[M]. 3rd ed. Beijing: Chinese Forestry Press, 2006:51.
    [2] SCARES P, TOMÉ M. Height-diameter equation for first rotation eucalypt plantations in Portugal[J]. Forest Ecology and Management, 2002, 166(1-3):99-109.
    [3] XIANG W,LÜ Y, QIU L. Models for tree height curves of Cunninghamia lanceolata in Huang Feng-qiao forestry farm of Hunan[J]. Central South Forest Inventory and Planning, 2007, 26(1):16-18.
    [3] 卢军, 张会儒, 雷相东, 等.长白山云冷杉针阔混交林幼树树高-胸径模型[J]. 北京林业大学学报, 2015, 37(11):10-25.
    [4] LI C M, LI L X. Height-diameter relationship for Quercus variabilis Blume plantations based on nonlinear mixed model[J]. Journal of Beijing Forestry University, 2009, 31(4):7-12.
    [4] 孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006:51.
    [5] 向玮, 吕勇, 邱林. 湖南黄丰桥林场杉木树高曲线模拟研制[J]. 中南林业调查规划, 2007, 26(1):16-18.
    [5] LI H K, FA L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10):83-90.
    [6] 李春明, 李利学. 基于非线性混合模型的栓皮栎树高与胸径关系研究[J]. 北京林业大学学报, 2009, 31(4):7-12.
    [6] MA W, LEI X D, XU G, et al. Growth model for individual-tree in natural Quercus mongolica forestsⅡ: height-diameter model[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(3):83-90.
    [7] TRINCADO G, VANDERSCHAAF C L, BURKHART H E. Regional mixed-effects height-diameter models for loblolly pine ( Pinus taeda L.) plantations[J]. European Journal of Forest Research, 2007, 126(2):253-262.
    [7] JIANG L C, LI F R. The application of mixed effects model in the model of forestry[M]. Beijing: Science Press, 2014, 2.
    [8] LI W T, JIANG L C, WAN D Y. Simulation of height-diameter relationships for Larix gmelinii based on mixed effects[J]. Bulletin of Botanical Research, 2014, 34(3):343-348.
    [8] LEI X, PENG C H, WANG H Y, et al. Individual height-diameter models for young black spruce ( Picea mariana ) and jack pine ( Pinus banksiana ) plantations in New Brunswick, Canada[J]. The Forestry Chronicle, 2009, 85(1):43-56.
    [9] JI Y. Climate-growth relationships of Korean pine in Heilongjiang and their potential for global warming[D]. Harbin: Northeast Forestry University, 2010.
    [9] HUANG S S, TITUS S J, WIENS D P. Comparison of nonlinear height-diameter functions for major Alberta tree species[J]. Canadian Journal of Forest Research, 1992, 22(9):1297-1304.
    [10] 李海奎, 法蕾. 基于分级的全国主要树种树高-胸径曲线模型[J]. 林业科学, 2011, 47(10):83-90.
    [10] ZENG W S, LUO Q B, HE D B. Research on weighting regression and modeling[J]. Scientia Silvae Sinicae, 1999, 35(5):5-11.
    [12] KRUMLAND B E, WENSEL L C. A generalized height-diameter equation for coastal California species[J]. Western Journal of Applied Forestry, 1988, 3(4):113-115.
    [13] SHARMA M, ZHANG S Y. Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana [J]. Scandinavian Journal of Forest Research, 2004, 19(5):442-451.
    [14] TEMESGEN H, GADOW K V. Generalized height-diameter models-an application for major tree species in complex stands of interior British Columbia[J]. European Journal of Forest Research, 2004, 123(1): 45-51.
    [15] 马武, 雷相东, 徐光, 等. 蒙古栎天然林单木生长模型的研究Ⅱ:树高-胸径模型[J]. 西北农林科技大学(自然科学版), 2015, 43(3):83-90.
    [16] 姜立春, 李凤日. 混合效应模型在林业建模中的应用[M]. 北京: 科学出版社, 2014, 2.
    [17] TEMESGEN H, MONLEON V J, HANN D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Canadian Journal of Forest Research, 2008, 38(3):553-565.
    [18] G��MEZ-GARCÍA E, DIÉGUEZ-ARANDA U, CASTEDO-DORADO F, et al. A comparison of model forms for the development of height-diameter relationships in even-aged stands[J]. Forest Science, 2014, 60(3):560-568.
    [19] 李婉婷, 姜立春, 万道印. 基于混合效应的兴安落叶松树高与胸径关系模拟[J]. 植物研究, 2014, 34(3):343-348.
    [20] 及莹. 黑龙江红松年轮气候响应及与变暖关系探讨[D]. 哈尔滨: 东北林业大学, 2010.
    [21] LEI Y C, PARRESOL B R. Remarks on height-diameter modeling[R]. Asheville: Forest Service, Research Note SRS-10, 2001.
    [22] CRECENTE-CAMPO F, CORRAL-RIVAS J J, VARGAS-LARRETA B, et al. Can random components explain differences in the height-diameter relationship in mixed uneven-aged stands?[J]. Annals of Forest Science, 2014, 71:51-70.
    [23] DAVIDIAN M, GILTINAN D M. Nonlinear models for repeated measurement data[M]. New York: CRC Press, 1995: 78.
    [24] 曾伟生, 骆期邦, 贺东北. 论加权回归与建模[J]. 林业科学, 1999, 35(5):5-11.
    [25] TEWARI V P, SINGH B. Potential density and basal area prediction equations for unthinned Eucalyptus hybrid plantations in the Gujarat state of India[J]. Bioresource Technology, 2008, 99(6):1642-1649.
    [28] HUANG S M, MENG S X, YANG Y Q. Using nonlinear mixed model technique to determine the optimal tree height prediction model for black spruce[J]. Modern Applied Science, 2009, 3(4):3-18.
    [29] MEHTÄTALO L, DE-MIGUEL S, GREGOIRE T G. Modeling height-diameter curves for prediction[J]. Canadian Journal of Forest Research, 2015, 45(7):826-837.
    [30] DORADO F C, DIÉGUEZ-ARANDA U, ANTA M B, et al. A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain[J]. Forest Ecology and Management, 2006, 229(1-3):202-213.
    [31] CRECENTE-CAMPO F, TOMÉ M, SOARES P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5):943-952.
    [32] SHARMA R P, BREIDENBACH J. Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data[J]. Forest Science and Technology, 2015, 11(1):44-53.
  • 加载中
计量
  • 文章访问数:  1105
  • HTML全文浏览量:  97
  • PDF下载量:  32
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-08
  • 修回日期:  2016-01-08
  • 刊出日期:  2016-06-30

目录

    /

    返回文章
    返回