Nonlinear mixed-effects height-diameter model of Pinus koraiensis
-
摘要: 以吉林省汪清林业局的蒙古栎阔叶混交林和云冷杉阔叶混交林24块固定样地中的2598株红松为研究对象,利用Chapman-Richards方程建立了不含随机效应与含随机效应的单木树高-胸径简单模型和广义模型。模型拟合和检验的评价指标主要包括调整决定系数(R2a)、平均相对误差绝对值(RMA)和均方根误差(RMSE)。对于混合效应模型,设计了随机抽取、抽胸径最大的树、抽胸径最小的树和抽平均木4种抽样方案计算随机参数,通过对比4种抽样设计下模型的误差统计量,分析了不同抽样设计下样本数量和预测精度的关系。结果表明:基于混合效应模型的红松单木树高-胸径模型拟合效果(简单模型的R2a在0.753~0.886之间,RMA在11.3%~15.1%之间,RMSE在1.38~2.01m之间;广义模型的R2a在0.754~0.886之间,RMA在11.1%~15.0%之间,RMSE在1.38~2.01m之间)优于不含随机参数的红松单木树高-胸径模型(简单模型的R2a在0.502~0.868之间,RMA在12.2%~17.8%之间,RMSE在1.42~2.65m之间;广义模型的R2a在0.711~0.877之间,RMA在11.6%~17.2%之间,RMSE在1.41~2.10m之间);包含随机效应的简单模型和广义模型拟合效果没有明显的差异,表明基于混合效应模型的单木树高-胸径简单模型可以很好地描述树高-胸径关系在不同森林类型、不同样地间的差异,因此不需要在树高-胸径模型中增加其他自变量;抽取平均木的抽样设计优于其他3种抽样设计,且抽取4株平均木时,预测精度提升最为明显,综合预测精度和调查成本的考虑,在实践中应用包含随机效应的红松树高-胸径模型时,推荐在样地中抽取4株平均木测量其树高来估计随机参数。Abstract: The Chapman-Richards function was used to construct individual height-diameter model for Pinus koraiensis. The data were collected from mixed deciduous stands of Mongolian oak-deciduous (Quercus mongolica) stands and mixed stands of spruce-fir and deciduous trees in Wangqing Forestry Bureau, Jilin Province of northeastern China. A total of 2 598 trees in 24 permanent plots were used for model development. Simple and generalized height-diameter model with and without random effect parameters were tested. Model evaluation criteria included adjusted determination coefficient (R2a), relative mean absolute error (RMA) and root mean square error (RMSE). For mixed-effects models, different sample sizes of four sampling designs, i.e., random sampling, the largest diameter tree sampling, the smallest diameter tree sampling and intermediate diameter tree sampling for random parameter estimation were compared and the relationship between sample size and predicted accuracy was analyzed. The results showed that the goodness-of-fit of individual height-diameter models based on mixed-effects model (R2a of simple models ranged between 0.753-0.886, RMA between 11.3%-15.1%, RMSE between 1.38-2.01m; R2a of generalized models ranged between 0.754-0.886, RMA between 11.1%-15.0%, RMSE between 1.38-2.01m) was better than that of individual height-diameter model without random effect parameters (R2a of simple models ranged between 0.502-0.868, RMA between 12.2%-17.8%, RMSE between 1.42-2.65m; R2a of generalized models ranged from 0.711-0.877, RMA between 11.6%-17.2%, RMSE between 1.41-2.10m). Furthermore, the difference of goodness-of-fit between simple and generalized height-diameter models with mixed-effects was not significant, which may lead us to a conclusion that individual height-diameter simple model with mixed-effects can describe the variation of height-diameter relationship in different forest types and plots, thus additional variables were not be necessary in height-diameter model. In addition, intermediate diameter tree sampling was better than others and predicted accuracy can be improved obviously when four mean diameter trees were sampled per plot. Taking predicted accuracy and investigation cost into account, we recommend sampling of four intermediate diameter trees per plot for practical application of the mixed-effects height-diameter model of Pinus koraiensis.
-
-
[1] AVERY T E, BURKHART H E. Forest measurements[M]. 5th ed. New York: McGraw-Hill, 2002: 313.
[1] LU J, ZHANG H R, LEI X D, et al. Height-diameter models for saplings in a spruce-fir mixed forest in Changbai Mountains[J]. Journal of Beijing Forestry University, 2015, 37(11):10-25.
[2] MENG X Y. Forest mensuration[M]. 3rd ed. Beijing: Chinese Forestry Press, 2006:51.
[2] SCARES P, TOMÉ M. Height-diameter equation for first rotation eucalypt plantations in Portugal[J]. Forest Ecology and Management, 2002, 166(1-3):99-109.
[3] XIANG W,LÜ Y, QIU L. Models for tree height curves of Cunninghamia lanceolata in Huang Feng-qiao forestry farm of Hunan[J]. Central South Forest Inventory and Planning, 2007, 26(1):16-18.
[3] 卢军, 张会儒, 雷相东, 等.长白山云冷杉针阔混交林幼树树高-胸径模型[J]. 北京林业大学学报, 2015, 37(11):10-25. [4] LI C M, LI L X. Height-diameter relationship for Quercus variabilis Blume plantations based on nonlinear mixed model[J]. Journal of Beijing Forestry University, 2009, 31(4):7-12.
[4] 孟宪宇. 测树学[M]. 3版. 北京: 中国林业出版社, 2006:51. [5] 向玮, 吕勇, 邱林. 湖南黄丰桥林场杉木树高曲线模拟研制[J]. 中南林业调查规划, 2007, 26(1):16-18. [5] LI H K, FA L. Height-diameter model for major tree species in China using the classified height method[J]. Scientia Silvae Sinicae, 2011, 47(10):83-90.
[6] 李春明, 李利学. 基于非线性混合模型的栓皮栎树高与胸径关系研究[J]. 北京林业大学学报, 2009, 31(4):7-12. [6] MA W, LEI X D, XU G, et al. Growth model for individual-tree in natural Quercus mongolica forestsⅡ: height-diameter model[J]. Journal of Northwest A&F University (Natural Science Edition), 2015, 43(3):83-90.
[7] TRINCADO G, VANDERSCHAAF C L, BURKHART H E. Regional mixed-effects height-diameter models for loblolly pine ( Pinus taeda L.) plantations[J]. European Journal of Forest Research, 2007, 126(2):253-262.
[7] JIANG L C, LI F R. The application of mixed effects model in the model of forestry[M]. Beijing: Science Press, 2014, 2.
[8] LI W T, JIANG L C, WAN D Y. Simulation of height-diameter relationships for Larix gmelinii based on mixed effects[J]. Bulletin of Botanical Research, 2014, 34(3):343-348.
[8] LEI X, PENG C H, WANG H Y, et al. Individual height-diameter models for young black spruce ( Picea mariana ) and jack pine ( Pinus banksiana ) plantations in New Brunswick, Canada[J]. The Forestry Chronicle, 2009, 85(1):43-56.
[9] JI Y. Climate-growth relationships of Korean pine in Heilongjiang and their potential for global warming[D]. Harbin: Northeast Forestry University, 2010.
[9] HUANG S S, TITUS S J, WIENS D P. Comparison of nonlinear height-diameter functions for major Alberta tree species[J]. Canadian Journal of Forest Research, 1992, 22(9):1297-1304.
[10] 李海奎, 法蕾. 基于分级的全国主要树种树高-胸径曲线模型[J]. 林业科学, 2011, 47(10):83-90. [10] ZENG W S, LUO Q B, HE D B. Research on weighting regression and modeling[J]. Scientia Silvae Sinicae, 1999, 35(5):5-11.
[12] KRUMLAND B E, WENSEL L C. A generalized height-diameter equation for coastal California species[J]. Western Journal of Applied Forestry, 1988, 3(4):113-115.
[13] SHARMA M, ZHANG S Y. Height-diameter models using stand characteristics for Pinus banksiana and Picea mariana [J]. Scandinavian Journal of Forest Research, 2004, 19(5):442-451.
[14] TEMESGEN H, GADOW K V. Generalized height-diameter models-an application for major tree species in complex stands of interior British Columbia[J]. European Journal of Forest Research, 2004, 123(1): 45-51.
[15] 马武, 雷相东, 徐光, 等. 蒙古栎天然林单木生长模型的研究Ⅱ:树高-胸径模型[J]. 西北农林科技大学(自然科学版), 2015, 43(3):83-90. [16] 姜立春, 李凤日. 混合效应模型在林业建模中的应用[M]. 北京: 科学出版社, 2014, 2. [17] TEMESGEN H, MONLEON V J, HANN D W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests[J]. Canadian Journal of Forest Research, 2008, 38(3):553-565.
[18] G��MEZ-GARCÍA E, DIÉGUEZ-ARANDA U, CASTEDO-DORADO F, et al. A comparison of model forms for the development of height-diameter relationships in even-aged stands[J]. Forest Science, 2014, 60(3):560-568.
[19] 李婉婷, 姜立春, 万道印. 基于混合效应的兴安落叶松树高与胸径关系模拟[J]. 植物研究, 2014, 34(3):343-348. [20] 及莹. 黑龙江红松年轮气候响应及与变暖关系探讨[D]. 哈尔滨: 东北林业大学, 2010. [21] LEI Y C, PARRESOL B R. Remarks on height-diameter modeling[R]. Asheville: Forest Service, Research Note SRS-10, 2001.
[22] CRECENTE-CAMPO F, CORRAL-RIVAS J J, VARGAS-LARRETA B, et al. Can random components explain differences in the height-diameter relationship in mixed uneven-aged stands?[J]. Annals of Forest Science, 2014, 71:51-70.
[23] DAVIDIAN M, GILTINAN D M. Nonlinear models for repeated measurement data[M]. New York: CRC Press, 1995: 78.
[24] 曾伟生, 骆期邦, 贺东北. 论加权回归与建模[J]. 林业科学, 1999, 35(5):5-11. [25] TEWARI V P, SINGH B. Potential density and basal area prediction equations for unthinned Eucalyptus hybrid plantations in the Gujarat state of India[J]. Bioresource Technology, 2008, 99(6):1642-1649.
[28] HUANG S M, MENG S X, YANG Y Q. Using nonlinear mixed model technique to determine the optimal tree height prediction model for black spruce[J]. Modern Applied Science, 2009, 3(4):3-18.
[29] MEHTÄTALO L, DE-MIGUEL S, GREGOIRE T G. Modeling height-diameter curves for prediction[J]. Canadian Journal of Forest Research, 2015, 45(7):826-837.
[30] DORADO F C, DIÉGUEZ-ARANDA U, ANTA M B, et al. A generalized height-diameter model including random components for radiata pine plantations in northwestern Spain[J]. Forest Ecology and Management, 2006, 229(1-3):202-213.
[31] CRECENTE-CAMPO F, TOMÉ M, SOARES P, et al. A generalized nonlinear mixed-effects height-diameter model for Eucalyptus globulus L. in northwestern Spain[J]. Forest Ecology and Management, 2010, 259(5):943-952.
[32] SHARMA R P, BREIDENBACH J. Modeling height-diameter relationships for Norway spruce, Scots pine, and downy birch using Norwegian national forest inventory data[J]. Forest Science and Technology, 2015, 11(1):44-53.
-
期刊类型引用(32)
1. 谢仕奎. 基于混合效应模型的林分优势木平均高-平均胸径模型研究. 四川林业科技. 2024(01): 84-90 . 百度学术
2. 程雯,武晓昱,叶尔江·拜克吐尔汉,王娟,赵秀海,张春雨. 基于混合效应和分位数回归的温带针阔混交林树高与胸径关系研究. 北京林业大学学报. 2024(02): 28-39 . 本站查看
3. 陈杰. 基于GA-BP神经网络的新疆南疆核桃树生长模型研究. 无线互联科技. 2024(04): 16-18+22 . 百度学术
4. 黄宏超,庞丽峰,符利勇,卢军,雷渊才. 含竞争指标的广义可加混合效应树高-胸径模型. 东北林业大学学报. 2024(06): 70-78 . 百度学术
5. 王胤,姚瑞玲,付军,张明慧. 马尾松组培苗幼林胸径和树高分布特征. 福建林业科技. 2024(02): 125-129+152 . 百度学术
6. 刘宁,王彬,郑淑霞,倪昊,王仙. 油松树高-胸径非线性混合效应模型的构建. 青海大学学报. 2024(05): 32-41 . 百度学术
7. 邵威威,董灵波. 大兴安岭地区兴安落叶松的高径比模型. 应用生态学报. 2023(02): 342-348 . 百度学术
8. 董灵波,邵威威,田栋元,刘兆刚. 基于林木分级的大兴安岭天然兴安落叶松树高曲线研究. 北京林业大学学报. 2023(05): 88-96 . 本站查看
9. 路文燕,董灵波,田园,汪莎杉,曲宣怡,魏巍,刘兆刚. 基于树种组成的大兴安岭天然林主要树种树高-胸径曲线研究. 南京林业大学学报(自然科学版). 2023(04): 157-165 . 百度学术
10. 吕乐乐,王文彬,董灵波. 基于哑变量和分位数回归的兴安落叶松更新幼树的树高-胸径模型. 应用生态学报. 2023(09): 2355-2362 . 百度学术
11. 夏洪涛,郭晓斌,张珍,田相林,郭福涛,孙帅超. 基于不同立地质量评价指标的杉木大径材林分树高-胸径模型. 中南林业科技大学学报. 2023(10): 80-88 . 百度学术
12. 李鑫,贾炜玮. 红松人工林叶面积分布规律及回归模型研究. 森林工程. 2023(06): 1-11 . 百度学术
13. 娄明华,杨同辉,王卫兵,毛建方,徐婧,章建红. 四明山黄山松针阔混交林的树高—胸径模型. 林业与环境科学. 2023(05): 7-14 . 百度学术
14. 马学欣,严耿坤,王锋,侯建花. 基于GA-BP神经网络的树木生长模型研究. 绿色科技. 2022(15): 185-190 . 百度学术
15. 余昆隆,谭伟,杨靖,王贵林,蒲秀青,姜仕昆. 基于分位数组合的杉木树高-胸径模型. 中南林业科技大学学报. 2022(11): 94-101 . 百度学术
16. 张毅,顾凤岐. 残差自回归模型在人工林红松树高生长规律预测中的应用. 东北林业大学学报. 2021(06): 76-79 . 百度学术
17. 陈浩,罗扬. 马尾松树高-胸径非线性混合效应模型构建. 森林与环境学报. 2021(04): 439-448 . 百度学术
18. 娄明华,白超,杨同辉. 宁波石栎-木荷天然常绿阔叶混交林的树高-胸径模型. 林业与环境科学. 2021(04): 46-54 . 百度学术
19. 娄明华,杨同辉,陈文伟,许俊. 宁波天然甜槠阔叶混交林树高—胸径模型研究. 防护林科技. 2021(05): 1-5 . 百度学术
20. 赵文纯,张再鑫,刘检明,赖永超. 基于随机森林的杉木标准树高曲线. 湖北林业科技. 2021(05): 20-23 . 百度学术
21. 张冬燕,王冬至,李晓,高雨珊,李天宇,陈静. 基于分位数回归的针阔混交林树高与胸径的关系. 浙江农林大学学报. 2020(03): 424-431 . 百度学术
22. 李杨,亢新刚. 长白山云冷杉针阔混交林林木空间利用率混合模型. 北京林业大学学报. 2020(05): 71-79 . 本站查看
23. 杨阳,彭浩贤,潘萍,欧阳勋志,臧颢,纪仁展,余枭. 基于混合效应的飞播马尾松林单木冠幅预测模型. 江西农业大学学报. 2020(05): 990-1001 . 百度学术
24. 王冬至,刘红艳,张冬燕,宋晓彤,徐安阳,李静. 华北落叶松与白桦混交林树高与胸径关系研究. 中南林业科技大学学报. 2020(11): 31-38 . 百度学术
25. 颜佳睿,李际平,曹小玉,唐涛,孙宇,王奕茹. 基于哑变量的闽楠人工林单木树高曲线模型. 中南林业科技大学学报. 2020(11): 47-54 . 百度学术
26. 李晓晶. 杂种落叶松树高-胸径模型的研究. 林业科技情报. 2020(04): 28-30 . 百度学术
27. 周晏平,雷泽勇,赵国军,韩艳刚. 沙地樟子松不同树高–胸径模型比较分析. 华南农业大学学报. 2019(03): 75-81 . 百度学术
28. 朱强,艾训儒,姚兰,朱江,吴漫玲,黄小,王进,洪建峰. 鄂西南川陕鹅耳枥种群结构与动态. 中南林业科技大学学报. 2019(08): 93-100 . 百度学术
29. 王冬至,张冬燕,李永宁,张志东,李大勇,黄选瑞. 基于贝叶斯法的针阔混交林树高与胸径混合效应模型. 林业科学. 2019(11): 85-94 . 百度学术
30. 韩艳刚,雷泽勇,赵国军,周晏平,徐畅. 樟子松人工固沙林冠幅——胸径模型. 干旱区研究. 2018(05): 1129-1137 . 百度学术
31. 杨玉泽,林文树,孙英伟. 小兴安岭地区针阔混交林主要树种生长模型研究. 林业资源管理. 2018(03): 49-57 . 百度学术
32. 谢龙飞,董利虎,李凤日. 人工长白落叶松立木叶面积预估模型. 应用生态学报. 2018(09): 2843-2851 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 2035
- HTML全文浏览量: 263
- PDF下载量: 72
- 被引次数: 45