Loading [MathJax]/jax/output/SVG/jax.js
  • Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

不同抚育间伐强度对落叶松人工林生态系统碳储量影响

孙志虎, 王秀琴, 陈祥伟

孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016
引用本文: 孙志虎, 王秀琴, 陈祥伟. 不同抚育间伐强度对落叶松人工林生态系统碳储量影响[J]. 北京林业大学学报, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016
SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016
Citation: SUN Zhi-hu, WANG Xiu-qin, CHEN Xiang-wei.. Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.[J]. Journal of Beijing Forestry University, 2016, 38(12): 1-13. DOI: 10.13332/j.1000-1522.20160016

不同抚育间伐强度对落叶松人工林生态系统碳储量影响

基金项目: 

中央高校基本科研业务费专项(2572014EB03-03、DL09EA03-2)、“十二五”国家科技支撑计划课题(2011BAD08B01、2011BAD37B01)。

详细信息
    作者简介:

    孙志虎,博士,副教授。主要研究方向:森林生态学。Email: szhihunefu@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。
    责任作者: 陈祥伟,教授,博士生导师。主要研究方向:森林培育。Email:chenxwnefu@163.com 地址:同上。

    孙志虎,博士,副教授。主要研究方向:森林生态学。Email: szhihunefu@163.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。
    责任作者: 陈祥伟,教授,博士生导师。主要研究方向:森林培育。Email:chenxwnefu@163.com 地址:同上。

Effects of thinning intensity on carbon storage of Larix olgensis plantation ecosystem.

  • 摘要: 以三江平原丘陵区佳木斯市孟家岗林场的长白落叶松人工幼龄林(17年生)为对象,设置5种长期、多次、不同强度的间伐试验:2次高强度间伐(L1,35.6%~43.4%)、2次中强度间伐(L2,23.1%~24.3%)、3次中强度间伐(L3,15.3%~23.8%)、4次低强度间伐(L4,5.8%~17.1%)和对照(CK,历次间伐时仅移出枯立木)。通过5种处理后幼龄林生长至成熟林时(56年生)生态系统各组分碳储量调查,结合1974—2013年历次间伐木和枯死木碳储量,从枯死木、间伐木和成熟林活立木生物量碳、土壤碳、生态系统碳分配和林分累计固碳量方面,评价长期间伐对落叶松人工林碳储量的影响。间伐不仅能够明显降低成熟林累计枯死木生物量碳,由CK处理的40.3 t/hm2降低至8.3(3.1~14.1)t/hm2,而且能够提供32.8(21.9~50.1)m3/hm2的间伐材和10.4(6.9~13.8)t/hm2的生物量碳用作生物质燃料。间伐虽然降低成熟林枯枝落叶层碳储量(比CK降低14.8%),但能增加矿质土壤碳储量(比CK提高5.6%),尤其是L3处理后矿质土壤碳储量明显增加(比CK提高15.5%);间伐没有改变成熟林活立木生物量碳和生态系统碳储量分配特征(林分尺度活立木生物量碳中树干、树根、树枝、树皮和树叶比例依次为67.7%~68.7%、17.5%~18.0%、6.8%~7.0%、4.8%~4.9%和2.2%~2.3%。生态系统碳储量中活立木、0~30 cm矿质土壤层、枯枝落叶层、枯立木、灌木层和草本层所占比例依次为69.7%~72.0%、24.7%~27.7%、1.5%~2.2%、0~1.3%、0.1%~1.3%和0.1%~0.2%);但能提高地下碳储量(活立木和枯立木树根+矿质土壤层+枯枝落叶层+灌木层+草本层)占生态系统碳储量比例(间伐为40.5%~42.4%,CK为40.0%),降低树干、树枝和树皮之和所占比例(间伐为56.0%~57.9%,CK为58.3%),维持针叶比例恒定(1.6%)。成熟林主伐时,仅利用干材而枝桠留地时,能使活立木生物量碳的26.5%~27.4%留存于林地(CK为27.7%),而将枝桠随树干一起移出系统时,能使活立木碳储量的19.7%~20.3%(CK为20.5%)、生态系统碳储量的42.1%~44.0%(CK为41.7%)留存于系统。落叶松幼龄林(17年生)多次间伐后至成熟林时(56年生)活立木生物量碳、生态系统碳储量和林分累计固碳量能够恢复至CK相近似水平,分别仅比CK降低1.7%(-4.3%~1.5%)、1.7%(-5.9%~1.4%)和1.1%(-4.0%~0.8%),L3和L4处理,尤其是L4处理在上述指标方面甚至高于CK 处理1.5%、1.4%和0.8%。5.8%~23.8%的3~4次中、低强度抚育间伐至成熟林时既可提供间伐材和生物质燃料又能维持高的活立木生物量碳、生态系统碳储量和林分累计固碳量。
    Abstract: A long-term thinning experiment in Korean larch (Larix olgensis) plantation of Mengjiagang Forest Farm of Kiamusze in hilly area of Sanjiang Plain, northeastern China, was conducted to identify the effects of thinning on biomass carbon (dead and live biomass), soil carbon (forest floor and mineral soil), total ecosystem carbon storage and accumulative carbon sequestration (dead tree +thinned tree+ ecosystem carbon storage). Two harvesting scenarios (stem-only vs. whole-tree harvesting) were assessed in terms of carbon export. The study site was a 56-year-old larch plantation, where five thinnings of different intensities and frequencies were applied: 2 times heavy (35.6%-43.4%) thinning (L1), 2 times moderate (23.1%-24.3%) thinning (L2), 3 times moderate (15.3%-23.8%) thinning (L3), 4 times light (5.8%-17.1%) thinning (L4) and unthinned (CK, only harvesting dead biomass). The five thinning interventions involved whole-tree harvesting of thinned and dead trees (entire removal of slash and stem). The results revealed difference between the unthinned and thinned plots as regards the total dead wood debris, the former containing 40.3 t/ha, in the case of thinned plots, 8.3 t/ha (range 3.1-14.1). The energy wood (logging residues) and timber production by thinning were 10.4 t/ha (range 6.9-13.8) and 32.8 m3/ha(rang 21.9-50.1), respectively. Although the forest floor carbon pool was susceptible to loss (14.8% lower than CK), the mineral soil carbon pool could be enhanced by thinning (5.6% higher than CK), particularly in L3 plot (15.5% higher than CK). Thinning could not change the allometric relationships of living tree biomass carbon pool (proportions of wood-stem, root, branch, bark and foliage to the retained living tree biomass carbon pool were 67.7%-68.7%, 17.5%-18.0%, 6.8%-7.0%, 4.8%-4.9% and 2.2%-2.3%, respectively) and total ecosystem carbon pool (proportions of retained living trees, 0-30 cm mineral soil, forest floor, dead standing tree, shrub layer and herb layer to the total ecosystem carbon storage were 69.7%-72.0%, 24.7%-27.7%, 1.5%-2.2%, 0-1.3%, 0.1%-1.3% and 0.1%-0.2%, respectively), but increase the proportion of belowground carbon (roots of live and standing dead trees+0-30cm mineral soil+forest floor+shrub+herb) to the total ecosystem carbon storage (40.5%-42.4%, 40.0% for CK), and decrease the proportion of aboveground carbon (stem+branch+bark; 56.0%-57.9%, 58.3% for CK). Stem-only harvesting of old growth plantation could leave 26.5%-27.4% of living biomass carbon (27.7% for CK), whole-tree harvesting could leave19.7%-20.3% of living biomass carbon (20.5% for CK), and 42.1%-44.0% of ecosystem carbon (41.7% for CK). The averaged values of retained tree biomass, ecosystem carbon storage and stand accumulative carbon sequestration of thinned old growth larch plantations (56-year-old) were of similar levels with CK, and only 1.7% (-4.3%-1.5%), 1.7%(-5.9%-1.4%) and 1.1%(-4.0%-0.8%) lower than CK, respectively, but in the L3 and L4 plots, particularly in the L4 plot, the above indexes were 1.5%, 1.4%, and 0.8% higher than CK, respectively. Our results indicated that 3 and 4 times light or moderate (5.8%-23.8%) thinning not only supplies energy wood and timber production, but also does not alter the retained tree biomass, total ecosystem carbon content and stand accumulative carbon sequestration of old growth larch plantation, suggesting the sustainability of these silvicultural treatments.
  • 氮是地球上生物体的基本元素,也是陆地生态系统限制植物生长的必要元素[1]。随着气候变化,植物可利用的氮正在减少,因此氮对控制陆地生态系统初级生产力起着关键作用[2]。土壤氮循环过程主要包括土壤氮的矿化和固定,硝化和反硝化作用等。其中,土壤氮矿化指的是土壤氮库中的有机氮在微生物作用下转化为植物和微生物可直接吸收的无机氮[3]。土壤氮矿化速率及其潜力直接影响土壤氮的有效性和供氮能力,对维持草地生态系统组成、结构与功能十分重要[45]。草地土壤微生物介导的氮转化过程不仅受到土壤物理和化学等非生物因子的影响,同时还受到生物因子的共同调控。土壤氮含量、形态及不同形态比例是影响土壤氮转化过程的主要限制因子,其中总氮矿化速率与土壤全氮含量呈正相关,而与土壤碳氮比呈负相关 [68]。土壤温度和湿度是影响氮矿化的两个重要因素,氮矿化量随着温度和湿度的增加而呈上升趋势[9]。土壤微生物对土壤氮矿化和固持均发挥了重要作用,进而影响土壤氮的可利用性和植物生长。研究表明,土壤氮矿化和固定与土壤微生物生物量显著相关,同时,微生物对氮矿化和固定受到土壤pH、土壤质地、有机质含量和质量等因素的调控[1011]。因此,微生物是影响土壤氮转化的重要生物因素。

    自20世纪中叶以来,人类活动和气候变化导致过量大气氮沉降显著改变了陆地生态系统生物地球化学循环[1213]。大气氮沉降通过影响土壤氮矿化来改变土壤氮的有效性。通常,氮沉降一方面通过增加植物叶片和凋落物氮含量,促进凋落物分解[14];另一方面,氮沉降可能降低微生物活性[15],抑制蛋白质的解聚合作用[16],进而减弱氮矿化作用。以往大量研究主要从氮沉降对土壤酸碱性[17]、土壤微生物生物量[18]、土壤氮降解酶[19]以及与土壤氮转化功能基因[20]的关系角度,探究其对土壤氮有效性及其转化过程背后复杂的生态学机制。然而,大部分研究集中在生长季节进行氮添加处理,这并不能完全模拟真实大气氮沉降过程。少数不同季节施氮处理试验表明,冬季和春季施氮能够促进植物能吸收更多氮[21],且春季相比秋季施氮能减少土壤氮损失[22]。但不同季节氮添加对土壤氮矿化的影响仍不明确,亟需更多实证研究探究土壤氮矿化对季节性施氮的响应及其调控机制。

    草原是最重要的陆地生态系统之一,全球草原总面积达5.25 × 109 hm2,占陆地总面积的40.5%[23]。温带草原是我国北方重要的生态安全屏障,其中内蒙古温带典型草原是我国面积最大的温带草原[24]。然而,多年来由于盲目开垦、过度放牧等不合理利用,内蒙古草原生态系统面临植物生产力、生物多样性下降和土壤养分元素亏缺等严重生态问题。尽管农业中氮肥和粪肥的使用量逐年增加,以提高食物和饲料供应,但也造成了氮污染问题[25]。相比之下,草原施肥仍处于起步阶段,大规模天然草原施肥尚未普及。由于生态系统类型、施氮方式和试验条件的差异,氮沉降对草地生态系统土壤氮矿化的影响可能有所不同。为解决这些问题,本研究选择内蒙古温带典型草原为研究对象,在不同季节(秋、冬、生长季)设置氮添加野外控制试验,通过测定净氮矿化速率、温度、水分等土壤常规理化指标,拟解决以下科学问题:(1) 不同季节氮添加如何影响土壤无机氮累计矿化量、净氮矿化潜力和净硝化潜力?(2) 土壤氮矿化对季节性氮添加响应的影响因素和驱动机制是什么?

    研究样地位于内蒙古锡林浩特草原生态系统定位研究站(43°13′12″ N,116°13′48″ E),海拔1 255 ~ 1 260 m,年均气温1.1 ℃,年均降水量343.5 mm,土壤为简育钙积土和旱成土,植物群落以大针茅(Stipa grandis)、羊草(Leymus chinensis)、西伯利亚羽茅(Achnatherum sibiricum)和冰草(Agropyron cristatum)为主要优势种。实验地在正式试验开始前未施化肥,且当地大气氮沉降量背景值低于1.0 g/(m2·a)(以N计,下同)[26]

    2014年7月,在锡林流域中部选择植被分布均匀的草地,采用随机区组设计设置不同季节氮添加试验。设计3个不同季节氮添加处理分别为秋季(10月下旬)、冬季(1月中旬)和生长季节(5月下旬),以及对照处理。每个处理8个重复,共计32个小区,每个小区面积为4 m × 4 m,小区之间设置1 m宽缓冲带。每种处理每年添加1次固体硝酸铵作为氮肥,添加的纯氮量为10 g/(m2·a),添加方式是将硝酸铵和细沙混合均匀撒施。采用顶盖埋管法[27]测定土壤净氮矿化速率。试验于2020年7月第一次取样,2021年开始(5—10月),每月取样测定一次。在每个小区内埋入3个长15 cm、内径为5 cm的PVC管,深度为土壤表层10 cm。为防止降水造成的淋溶损失,管顶部用透气不透水的滤膜封住。原位培养30 d后取出管内的土壤进行铵态氮和硝态氮的测定。埋管前,在距PVC管20 cm处用直径5 cm的土钻取0 ~ 10 cm的土壤,用于测定初始无机氮含量。根据培养前后无机氮含量差值除以培养时间,计算净氮矿化速率。计算公式如下

    Δt=t1t0
    ΔCa=Cat1Cat0
    ΔCb=Cbt1Cbt0
    Rmin=ΔCa+ΔCbΔt
    Rnit=ΔCbΔt
    Ramm=ΔCaΔt

    式中:t0为野外培养开始时间,t1为野外培养结束时间,Δt 为培养前后时间间隔,ΔCa为培养后净铵态氮增加量,ΔCb为培养后净硝态氮增加量,Ca为铵态氮 (mg/kg),Cb为硝态氮(mg/kg),RminRnitRamm分别表示净氮矿化速率 (mg/(kg·d))、净硝化速率 (mg/(kg·d))、净铵化速率 (mg/(kg·d))。

    土壤铵态氮和硝态氮用0.5 mol/L氯化钾浸提后,浸提液采用全自动微量流动注射仪(FLASTAR5000,FOSS,Sweden)测定。土壤温度用数字显示温度计测定,土壤水分采用称重法测定。

    采用重复测量方差分析(ANCOVA)方法,分析不同季节氮添加对土壤无机氮含量和净氮矿化速率的影响。并采用多元回归模型评价了环境因子和土壤基本理化指标对土壤净氮矿化潜力的影响。所有的统计分析都在R语言软件完成(R Development Core Team,2016)。

    土壤铵态氮、硝态氮和无机氮含量随不同季节氮添加发生了显著变化(图1)。与对照相比,秋季、冬季和生长季氮添加显著增加了硝态氮和无机氮含量,冬季和生长季氮添加显著提高了铵态氮含量(P < 0.05)。其中,生长季氮添加使铵态氮、硝态氮和无机氮含量增加最多(P < 0.01),分别增加了226.5%、131.8%和172.5%。土壤铵态氮、硝态氮和无机氮对不同季节施氮的响应都表现出明显的月动态变化特征(图1)。2020年7月,生长季氮添加导致铵态氮、硝态氮和无机氮达到最大。次年,不同施氮处理下,铵态氮、硝态氮和无机氮在5、6月份最高,之后呈下降趋势。

    图  1  不同季节氮添加土壤铵态氮、硝态氮和无机氮季节变化的影响
    不同小写字母表示不同处理间差异显著(P < 0.05),不同大写字母表示不同时间差异显著(P < 0.05)。下同。Different lowercase letters indicate significant difference at P < 0.05 level among varied treatments. Different uppercase letters indicate significant difference at P < 0.05 level among varied times. The same below.
    Figure  1.  Effects of seasonal nitrogen (N) addition on seasonal variations of soil NH+4-N, NO3-N, and inorganic N concentrations

    通过重复测量方差分析,发现不同季节氮添加处理对净氮矿化速率、净硝化速率、净铵化速率的影响不显著(P > 0.05)。然而,采样时间对氮矿化速率、净硝化速率、净铵化速率的影响显著,同时采样时间和不同季节氮添加处理的交互作用对净氮矿化速率、净硝化速率、净铵化速率也具有显著影响(图2)。

    图  2  不同季节氮添加土壤铵化、硝化和矿化速率季节变化的影响
    Figure  2.  Effects of seasonal N addition on seasonal variations of N ammonification, nitrification and mineralization

    不同季节氮添加处理下净铵化速率的月动态变化基本一致,呈现先增加(5—7月)后减少(7—9月)再增加(9—10月)的波浪形趋势(图2a)。其中,净铵化速率在7月份最高,5月和10月份差异显著,而其他月份差异则不显著。净硝化速率在5—6月、7—8月和8—9月最大,这3个月之间差异并不显著,而与6—7月和9—10月具有显著差异(图2b)。2021年净氮矿化速率显著高于2020年,表现出显著的年际差异。净氮矿化速率对不同季节施氮的响应并没有表现出显著的月动态差异。2021年净矿化速率均高于2020年(图2c)。

    土壤氮矿化速率通常会受到环境因素的影响,多元统计分析结果表明(图3),土壤水分和净铵化速率显著负相关(P < 0.05)。温度和降水与净硝化速率分别呈显著负相关和正相关(P < 0.001),且前者与净硝化速率的相关性更大。与净硝化速率相关性基本一致,温度和降水对净氮矿化速率分别表现出显著的负效应(P < 0.01)和正效应(P < 0.05)。

    图  3  多元回归模型中的预测变量对净铵化速率(a)、净硝化速率(b)和净氮矿化速率(c)的影响
    效应量为平均值 ± 标准误。*表示在P < 0.05水平上显著相关;**在P < 0.01水平上显著相关;***在P < 0.001水平上显著相关。Effect sizes are represented as mean ± SE. * means significant correlation at the P < 0.05 level; ** means significant correlation at P < 0.01 level; *** means significant correlation at P < 0.001 level.
    Figure  3.  Effects of predictor variables on net ammonification rate (a), net nitrification rate (b) and net N mineralization rate (c) from multiple regression models

    土壤无机氮含量是地上植物生产力和土壤微生物生物量及其活性的限制因子[5,28]。本研究发现,相比于对照,不同季节性施氮显著促进了土壤无机氮的积累,但无机氮库大小随着试验时间的推移呈下降趋势,这与以往研究结果部分一致[2931]。其主要原因可能是,无机氮的输入提高了土壤有效氮水平,同时也促进了土壤净硝化作用和净矿化作用[3233]。大量不同氮水平添加试验结果表明,无机氮含量随施氮浓度的增加而增加[29,3435],但也有部分研究发现,氮添加对土壤无机氮含量的调控存在饱和阈值[8],这可能与施氮剂量、土壤理化特性和微生物活性等有关。

    不同季节施氮条件下,铵态氮和硝态氮含量在5—6月份较高(图1),但从整个生长季来看,铵态氮和硝态氮都呈下降趋势(图1)。这可能是由于实验地的优势物种为羊草,其偏好吸收铵态氮,同时氨挥发和硝化作用等多重过程的影响也导致铵态氮库减少[36]。这与在黄土高原典型草原的研究结果一致[30],可能是因为这两个地方气候环境相似,都是降水较少,植物和微生物一定程度上偏好利用铵态氮[30]。尽管本研究添加的无机氮为硝酸铵,植物氮偏好和微生物固定和硝化过程都需将硝态氮转化成铵盐或铵根来吸收和利用,再加上淋溶等影响从而导致硝态氮库呈下降趋势。从不同季节氮添加影响来看,与秋季和冬季施氮相比,生长季施氮对铵态氮、硝态氮和无机氮库的影响更显著(图1)。这表明,生长季氮添加可能会放大土壤无机氮库对氮沉降的响应。

    氮添加通过改变土壤无机氮库组成、大小和可利用性,进而对土壤矿化作用产生显著促进作用[3739]。本研究中土壤净铵化速率在2021年5—7月有上升的趋势,这可能是由于气温回升微生物活性增强导致有机氮矿化增加[40]。而在7—10月净铵化速率又呈下降趋势,直接的影响表现为铵态氮含量减少,这可能与植物生长逐渐达到高峰并逐渐减缓,以及在这期间氮固定作用加强有关。土壤净硝化速率在2021年5—7月显著降低,可能是由于这一时期植物处于生长旺盛期,对无机氮尤其是铵态氮需求较高,促使硝态氮部分转化为铵态氮,从而减弱了硝化作用[4142]。而在8—10月,净硝化速率随氮添加而增加,由于该地区属于半干旱草原气候,而在此时间段降水较多缓解了水分限制,导致硝化作用加强,也反映出该地区在夏秋季氮矿化作用是以硝化作用为主。此前在盐渍化草地和沙质草地的研究结果也分别反映出土壤净氮矿化速率的月和年际动态变化,并且氮矿化速率对氮添加水平的敏感性不同[31,35,41]

    需要注意的是从生长季末期开始(9月)净铵化速率大幅降低,且生长季氮添加的净铵化速率显著低于秋季和冬季施氮,说明无机氮向有机氮转化,生长季施氮促进了该转化过程,这可能与氮添加诱导的生物固持与矿化作用的强弱有关系[4344]。生长季结束后(10月),净铵化速率逐渐增加,意味着铵固定作用减弱,且生长季施氮相比秋、冬季施氮对净铵化速率的促进作用更大,可能是由于生长季相比秋、冬季氮添加距离生长季末期时间较近,经历完整生长季后存留的微生物依旧会通过矿化有机氮来获取氮(可能主要是铵态氮),这从该时期土壤铵态氮和硝化速率较低也能得以印证。土壤净氮矿化速率和净硝化速率在生长季末期都为正值,意味着该时期已有大量微生物死亡并转化为土壤有机氮;另外尽管同时期铵化速率为负值,一种可能性表明土壤微生物依旧能够矿化利用土壤中微生物残体及其细胞溶解物来获取自身能量和养分物质需求,并促进硝化作用主导的氮矿化过程[45]。生长季氮添加相比于秋、冬季氮添加显著提高了生长季末期净硝化速率和净氮矿化速率,猜测可能是因为生长季施氮使得大量微生物繁殖和生长并矿化有机氮,而生长季末期无法满足土壤存留微生物的生长,迫使异氧微生物对无机氮的矿化和积累[6]。邹亚丽等[30]、徐小惠等[31]、杨仕明等[34]和Corre等[44]在不同生态系统都发现氮添加显著改变了无机氮库、土壤净硝化速率和净矿化速率,并且表现出季节性变化规律,但这些研究施氮时间都在生长季(5—7月),缺乏不同季节氮添加对土壤氮矿化过程和机理的研究,因此今后需加强不同季节施氮对氮矿化影响的研究,以期更好地反映大气氮沉降的真实生态效应。

    土壤氮矿化是由生物和非生物因素共同驱动,将土壤有机氮转换为无机氮的生物化学过程。总体而言,温度、水分、氮含量和形态是影响氮沉降和施肥对草原土壤氮转化影响的关键因素[4648]。其中,温度和降水的季节变化可以直接促进和抑制土壤氮转化[42,49]。在一定范围内,矿化速率随温度上升而增加[9,48],但也有研究发现在温度3 ~ 15 ℃范围内,氮矿化速率并没有受到温度的影响甚至是下降[5051]。本研究中,温度升高对净硝化速率和净矿化速率表现出负效应,降水增加则表现出正效应(图3)。这可能是由于温度和降水差异导致不同月份之间氮转化对不同季节氮添加的响应有所不同。

    本研究分析了不同季节氮添加对内蒙古温带典型草原土壤净氮矿化速率的影响,得出以下主要结论:不同季节氮添加对土壤铵态氮、硝态氮和无机氮产生了显著影响。其中,与秋季和冬季氮添加相比,生长季氮添加显著增加了无机氮库。土壤无机氮库对不同季节氮添加的响应呈现明显的月动态变化。与无机氮类似,土壤氮矿化速率对不同季节氮添加也表现出明显的月动态特征。净铵化速率、净硝化速率和净氮矿化速率对生长季氮添加的响应最明显。土壤无机氮库和氮矿化对不同季节氮添加的响应差异主要受到温度和降水的影响,而氮添加形式和时间也会影响土壤氮转化过程。因此,未来应重点解析不同季节氮添加对土壤氮转化过程方向、程度、过程及内在机制,这有助于全面了解人为大气氮沉降对陆地生态系统土壤氮循环的影响。

    致谢 感谢中国科学院内蒙古草原生态系统定位研究站给予本研究野外工作的支持,感谢陈旭、芦海宁、任正汝、张雨秋、刘若萱、刘丽娟、王晓燕、宋长春和卢炜煜在野外实验数据收集和整理上的帮助。

  • [1]

    DWYER J M, FENSHAM R, BUCKLEY Y M. Restoration thinning accelerates structural development and carbon sequestration in an endangered Australian ecosystem[J] . Journal of Applied Ecology, 2010,47(3): 681-691.

    [1]

    LIU G H, FU B J, FANG J Y. Carbon dynamics of Chinese forests and its contribution to global carbon balance[J] . Acta Ecologica Sinica, 2000,20(5):732-740.

    [2]

    SUN Y J, ZHANG J, HAN A H, et al. Biomass and carbon pool of Larix gmelini young and middle age forest in Xing'an Mountains, Inner Mongolia[J] . Acta Ecologica Sinica,2007, 27(5):1756-1762.

    [2]

    NUNERY J S, KEETON W S. Forest carbon storage in the northeastern United States: net effects of harvesting frequency, post-harvest retention, and wood products[J] . Forest Ecology and Management, 2010,259(1): 1363-1375.

    [3]

    POWERS M, KOLKA R, PALIK B, et al. Long-term management impacts on carbon storage in Lake States forests[J] . Forest Ecology and Management, 2011,262(3):424-431.

    [3]

    JU W Z, WANG X J, SUN Y J. Age structure effects on stand biomass and carbon storage distribution of Larix olgensis plantation[J] . Acta Ecologica Sinica, 2011, 31(4):1139-1148.

    [4]

    CLARKE N, GUNDERSEN P, JNSSON-BELYAZID U, et al. Influence of different tree-harvesting intensities on forest soil carbon stocks in boreal and northern temperate forest ecosystems[J] . Forest Ecology and Management, 2015,351 (1):9-19.

    [4]

    YIN M F, ZHAO L, CHEN X F, et al. Carbon storage maturity age of Larix olgenisis and L. kaempferi[J] . Chinese Journal of Applied Ecology, 2008,19(12): 2567-2571.

    [5]

    ALAM A, KILPELAINEN A, KELLOMAKI S. Impacts of initial stand density and thinning regimes on energy wood production and management-related CO2 emissions in boreal ecosystems[J] . European Journal of Forest Research, 2012,131(3): 655-667.

    [5]

    JIA Z K, GONG N N, YAO K, et al. Effects of thinning intensity on the growth and biomass of Larix principis-rupprechtii plantation in Saihanba, Hebei Province[J] . Journal of Northeast Forestry University, 2012,40(3):5-7,31.

    [6]

    WANG M, LI F R, JIA W W, et al. Dynamic change of carbon storage for larch plantation in Heilongjiang Province[J] . Bulletin of Botanical Research,2013, 33(5):623-628.

    [6]

    RUIZ-PEINADO R, BRAVO-OVIEDO A, LPEZ-SENESPLEDA E, et al. Do thinnings influence biomass and soil carbon stocks in Mediterranean maritime pinewoods [J] . European Journal of Forest Research, 2013,132(2):253-262.

    [7]

    VARGAS R, ALLEN E B, ALLEN M F. Effects of vegetation thinning on above-and belowground carbon in a seasonally dry tropical forest in Mexico[J] . The Journal of Tropical Biology and Conservation, 2009,41(3):302-311.

    [7]

    SUN Z H, JIN G Z, MU C C. On the long-term productivity maintenance of monoculture Larix olgensis larch timber forest in northeastern China[M] . Beijing: Science Press,2009.

    [8]

    NAVE L E, VANCE E D, SWANSTON C W, et al. Harvest impacts on soil carbon storage in temperate forests[J] . Forest Ecology and Management, 2010,259(1): 857-866.

    [9]

    WANG W F, PENG C H, KNEESHAW D D, et al. Modeling the effects of varied forest management regimes on carbon dynamics in jack pine stands under climate change[J] . Canadian Journal of Forest Research, 2013,43(5):469-479.

    [10]

    THUMBER C, EASTAUGH C S, HASENAUER H. A thinning routine for large-scale biogeochemical mechanistic ecosystem models[J] . Forest Ecology and Management, 2014,320(1): 56-69.

    [11] 刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J] .生态学报,2000,20(5):732-740.
    [12] 孙玉军,张俊,韩爱惠,等.兴安落叶松(Larix gmelini)幼中龄林的生物量与碳汇功能[J] .生态学报, 2007,27(5):1756-1762.
    [13] 巨文珍,王新杰,孙玉军.长白落叶松林龄序列上的生物量及碳储量分配规律[J] .生态学报,2011,31(4):1139-1148.
    [14] 殷鸣放,赵林,陈晓非,等.长白落叶松与日本落叶松的碳储量成熟龄[J] .应用生态学报,2008,19(12):2567-2571.
    [15] 贾忠奎,公宁宁,姚凯,等.间伐强度对塞罕坝华北落叶松人工林生长进程和生物量的影响[J] .东北林业大学学报,2012,40(3):5-7,31.
    [16] 王蒙,李凤日,贾炜炜,等.黑龙江省落叶松人工林碳储量动态研究[J] .植物研究,2013,33(5):623-628.
    [17] 孙志虎,金光泽,牟长城.长白落叶松人工林长期生产力维持的研究[M] .北京:科学出版社, 2009.
    [18]

    BARITZ R, SEUFERT G, MONTANARELLA L, et al. Carbon concentrations and stocks in forest soils of Europe[J] . Forest Ecology and Management,2010,260(3):262-277.

    [19]

    KURTH V J, D’AMATO A W, PALIK B J, et al. Fifteen-year patterns of soil carbon and nitrogen following biomass harvesting[J] . Soil Science Society of America Journal, 2014,8(2): 624-633.

    [20]

    PAN Y, BIRDSEY R A, FANG J, et al. A large and persistent carbon sink in the world’s forests[J] . Science, 2011,333:988-993.

    [21]

    ESWARAN H, BERG E V D, REICH P. Organic carbon in soils of the world[J] . Soil Science Society of America Journal, 1993,57(1):192-194.

    [22]

    BATJES N H. Mitigation of atmospheric CO2 concentrations by increased carbon sequestration in the soil[J] . Biology Fertility of Soils, 1998,27(3):230-235.

    [23]

    JANDL R, LINDNER M, VESTERDAL L, et al. How strongly can forest management influence soil carbon sequestration [J] . Geoderma, 2007,137(3): 253-268.

    [24]

    GRAND S, LAVKULICH L M. Effects of forest harvest on soil carbon and related variables in Canadian spodosols[J] . Soil Science Society of America Journal, 2012,76(5): 1816-1827.

    [25]

    HOOVER C M. Management impacts on forest floor and soil organic carbon in northern temperate forests of the US[J] . Carbon Balance and Management, 2011,6(1):17-24.

    [26]

    GOODALE C L, APPS M J, BIRDSEY R A, et al. Forest carbon sinks in the northern hemisphere[J] . Ecological Applications, 2002, 12(3):891-899.

    [27]

    VESTERDAL L, ELBERLING B, CHRISTIANSEN J R, et al. Soil respiration and rates of soil carbon turnover differ among six common European tree species[J] . Forest Ecology and Management, 2012,264(1):185-196.

    [28]

    JOHNSON D W, CURTIS P S. Effects of forest management on soil C and N storage: meta analysis[J] . Forest Ecology and Management, 2001,140(1):227-238.

    [29]

    ROIG S, RIO M, CANELLAS I, et al. Litter fall in Mediterranean Pinus pinaster Ait. stands under different thinning regimes[J] . Forest Ecology and Management,2005,206(1): 179-190.

    [30]

    BLANCO J A, IMBERT J, CASTILLO F J. Influence of site characteristics and thinning intensity on litterfall production in two Pinus sylvestris L. forests in the western Pyrenees[J] . Forest Ecology and Management, 2006, 237(1): 342-352.

    [31]

    SLODICAK M, NOVAK J, SKOVSGAARD J P. Wood production, litter fall and humus accumulation in a Czech thinning experiment in Norway spruce (Picea abies (L.) Karst.) [J] . Forest Ecology and Management, 2005,209(1): 157-166.

    [32]

    DINCA L C, SPARCHEZ G H, DINCA M, et al. Organic carbon concentrations and stocks in Romanian mineral forest soils[J] . Annals of Forest Research, 2012,55(2):229-241.

    [33]

    VESTERDAL L, RAULUND-RASMUSSEN K. Forest floor chemistry under seven tree species along a soil fertility gradient[J] . Canadian Journal of Forest Research, 1998, 28(11):1636-1647.

    [34]

    CALLESEN I, LISKI J, RAULUND-RASMUSSEN K, et al. Soil carbon stores in Nordic well-drained forest soils: relationships with climate and texture class[J] . Global Change Biology, 2003,9(3): 358-370.

    [35]

    ZHAO D H, KANE M, TESKEY R, et al. Impact of management on nutrients, carbon, and energy in aboveground biomass components of mid-rotation loblolly pine (Pinus taeda L.) plantations[J] . Annals of Forest Science, 2014,71(8): 843-851.

    [36]

    VESTERDAL L, DALSGAARD M, FELBY C, et al. Effects of thinning and soil properties on accumulation of carbon, nitrogen and phosphorus in the forest floor of Norway spruce stands[J] . Forest Ecology and Management, 1995, 77(1):1-10.

    [37]

    JONARD M, MISSON L, PONETTE Q. Long-term thinning effects on the forest floor and the foliar nutrient status of Norway spruce stands in the Belgian Ardennes[J] . Canadian Journal of Forest Research, 2006,36(10): 2684-2695.

    [38]

    SKOVSGAARD J P, STUPAK I, VESTERDAL L. Distribution of biomass and carbon in even-aged stands of Norway spruce (Picea abies (L.) Karst.): a case study on spacing and thinning effects in northern Denmark[J] . Scandinavian Journal of Forest Research, 2006, 21(6): 470-488.

    [39]

    TVEITE B, HANSSEN K H. Whole-tree thinnings in stands of Scots pine (Pinus sylvestris) and Norway spruce (Picea abies):short-and long-term growth results[J] . Forest Ecology and Management, 2013,298(1): 52-61.

    [40]

    DEWAR R, CANNELL M G R. Carbon sequestration in the trees, products and soils of forest plantations: an analysis using UK examples[J] . Tree Physiology, 1992,11(1): 49-71.

    [41]

    THORNLEY J H M, CANNELL M G R. Managing forests for wood yield and carbon storage: a theoretical study[J] . Tree Physiology, 2000,20(7):477-484.

    [42]

    HAWTHORNE S N D, LANE P N J, BREN L J, et al. The long term effects of thinning treatments on vegetation structure and water yield[J] . Forest Ecology and Management, 2013,310(1):983-993.

    [43]

    HERAS J D L, MOYA D, LO'PEZ-SERRANO F R, et al. Carbon sequestration of naturally regenerated Aleppo pine stands in response to early thinning[J] . New Forests, 2013,44: 457-470.

    [44]

    ALFARO-SANCHEZ R,LOPEZ-SERRANO F R, RUBIO E, et al. Response of biomass allocation patterns to thinning in Pinus halepensis differs under dry and semiarid Mediterranean climates[J] . Annals of Forest Science, 2015,72(5): 595-607.

    [45]

    BAGDON B, HUANG C H. Carbon stocks and climate change: management implications in Northern Arizona ponderosa pine forests[J] . Forests, 2014,5(4): 620-642.

    [46]

    MARTIN J L, GOWER S T, PLAUT J, et al. Carbon pools in a boreal mixedwood logging chronosequence[J] . Global Change Biology, 2005,11(11): 1883-1894.

    [47]

    BRADFORD J B, FRAVER S, MILO A M, et al. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks[J] . Forest Ecology and Management, 2012,267(1): 209-214.

    [48]

    WARD C, POTHIER D, PARE D. Do boreal forests need fire disturbance to maintain productivity[J] . Ecosystems, 2014,17(6): 1053-1067.

    [49]

    ALAM A, KELLOMAKI S, KILPELAINEN A, et al. Effects of stump extraction on the carbon sequestration in Norway spruce forest ecosystems under varying thinning regimes with implications for fossil fuel substitution[J] . Global Change Biology Bioenergy, 2013,5(4): 445-458.

    [50]

    POWERS M D, KOLKA R K, BRADFORD J B, et al. Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands[J] . Ecological Applications, 2012,22(4): 1297-1307.

    [51]

    PYORALA P, KELLOMKI S, PELTOLA H. Effects of management on biomass production in Norway spruce stands and carbon balance of bioenergy use[J] . Forest Ecology and Management, 2012,275(1): 87-97.

计量
  • 文章访问数:  2205
  • HTML全文浏览量:  269
  • PDF下载量:  83
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-01-17
  • 发布日期:  2016-12-30

目录

/

返回文章
返回