Estimation of dewfall amount in a typical desert shrub ecosystem.
-
摘要: 当前对干旱半干旱过渡带生态系统凝结水量的估算及其年际变化的认识仍十分有限。本研究以宁夏盐池沙生灌木生态系统为对象,运用微型蒸渗仪、涡度相关(eddy covariance,EC)法和Penman-Monteith公式对凝结水进行测定和估算,以求探索涡度相关法和Penman-Monteith公式估算凝结水的准确性,并且分析凝结水季节和年际变化、其对生态系统水量平衡的贡献及降雨对凝结水的影响。结果表明:1)以微型蒸渗仪观测结果为对照标准,涡度相关法因在夜间存在严重的能量不闭合会造成凝结水严重低估,而Penman-Monteith公式可以较准确地估算凝结水量(R2 =0.94,P0.05);2)采用Penman-Monteith公式估算2012—2014年凝结水,日平均凝结水量为0.14±0.08 mm,年平均凝结水发生天数为259 d/a,估算2012—2014年凝结水年总量分别为46、33和29 mm。凝结水多发生在夏秋季。2012—2014年降雨年平均量为301 mm。凝结水年均总量是平均降雨总量的12%。3)降雨时与降雨后一天凝结水成显著正相关关系(R2=0.81, P0.05)。2012—2014年≥20 mm的降雨次数占全年总降雨次数百分比分别为10%、5%和3%,≥20 mm的降雨能够为空气提供较多水分,增加凝结水量。因此≥20 mm降雨次数占全年总降雨次数的百分比将显著影响当年凝结水总量。结果证实,虽然凝结水总量年际差异较大且占降雨的百分比较小,凝结水是维持荒漠生态系统功能的重要稳定水源。
-
关键词:
- 凝结水 /
- 涡度相关法 /
- Penman-Monteith公式 /
- 能量闭合 /
- 降雨
Abstract: Estimation of dewfall amount and its interannual variation in arid and semi-arid transitional ecosystems are still limited. Microlysimeter, eddy covariance (EC) method and Penman-Monteith equation were used to calculate the dewfall amount in a desert shrub ecosystem in Yanchi Research Station, Ningxia, Northwest China. The objectives of this study were to explore the accuracy of EC and Penman-Monteith equation in dewfall estimation, to analyze the seasonal and interannual variations of dewfall amount, the contribution of dewfall amount to the water balance of the ecosystem and the influence of rainfall on dewfall. The results indicated that: 1) taking the results observed by microlysimeter as a control, EC method could lead to a substantial underestimation of dewfall amount because of its low energy closure at night, but the Penman-Monteith equation could precisely estimate dewfall amount (R2 = 0.94, P0.05). 2) Dewfall amount during 2012—2014 was estimated by the Penman-Monteith equation. Mean daily dewfall amount (during 2012—2014) was 0.14±0.08 mm, average number of dewfall days was 259 days per year, dewfall amount in the years 2012 to 2014 was 46, 33 and 29 mm, respectively. Dewfall occurred more frequently in summer and autumn. The average annual rainfall amount during 2012—2014 was 301 mm. The average annual dewfall amount accounted for 12% of the average annual rainfall. 3) Rainfall and the dewfall amount on the day after rainfall showed a significant positive relationship (R2=0.81, P0.05). The percentage of ≥20 mm rainfall events accounted for 10%, 5% and 3% of the yearly total rainfall events in the years 2012 to 2014, respectively. Rainfall larger than 20 mm could add more water vapor in the air, thus increasing dewfall amount. Thereafter the percentage of ≥20 mm rainfall events to the yearly total rainfall events would significantly influence the annual dewfall amount. The results prove that dewfall is an important and stable water resource to maintain the function of desert ecosystem system despite of its large interannual differences and relatively small percentage in rainfall.-
Keywords:
- dewfall /
- eddy covariance /
- Penman-Monteith equation /
- energy closure /
- rainfall
-
-
[1] PAN Y X, WANG X P, ZHANG Y F, et al. Influence of topography on formation characteristics of hygroscopic and condensatewater in Shapotou, Ningxia, China[J]. Journal of Desert Research, 2014, 34(1): 118-124.
[1] 潘颜霞, 王新平, 张亚峰, 等. 沙坡头地区地形对凝结水形成特征的影响[J]. 中国沙漠, 2014, 34(1): 118-124. [2] ZHUANG Y L, RATCLIFFE S. Relationship between dew presence and Bassia dasyphylla plant growth[J]. Journal of Arid Land, 2012, 4(1): 11-18.
[2] ZHUANG Y L, ZHAO W Z. Experimental study of effects of artificial dew on Bassia dasyphylla and Agriophylum squarrosum[J]. Journal of Desert Research, 2010, 30(5):1068-1074.
[3] LIU X D, ZHANG K B, WANG L L, et al. How enclosure affects community characteristics of the sandy grassland in semi-arid areas of northwestern China[J]. Journal of Beijing Forestry University, 2015, 37(2):48-54.
[3] EVENARI M,SHANAN L,TADMOR N. The Negev: challenge of a desert[M]. Cambridge:Harvard University Press,1971.
[4] LI X M, ZHANG Q L. Impact of climate factors on CO2 flux characteristic in a Larix gmelinii forest ecosystem[J]. Journal of Beijing Forestry University, 2015, 37(8):31-39.
[4] NINARI N,BERLINER P R. The role of dew in the water and heat balance of bare loess soil in the Negev Desert:quantifying the actual dew deposition on the soil surface[J]. Atmospheric Research, 2002, 64(1-4): 323-334.
[5] YANG Q, ZHA T S, JIA X, et al. Rainfall effects on the sap flow of Hedysarum scoparium[J]. Chinese Journal of Applied Ecology, 2016, 27(3):761-768.
[5] BENYENS D.The formation of dew[J]. Atmospheric Research, 1995, 39(1-3): 215-237.
[6] DUVDEVANI S. An optical method of dew estimation[J]. Quarterly Journal of the Royal Meteorological Society, 1947, 73: 282-296.
[7] 庄艳丽, 赵文智. 荒漠植物雾冰藜和沙米叶片对凝结水响应的模拟实验[J]. 中国沙漠, 2010, 30(5):1068-1074. [8] JACOBS A F G, HEUSINKVELD B G, WICHINK KRUIT R J, et al. Contribution of dew to the water budget of a grassland area in the netherlands[J/OL]. Water Resources Research, 2006, 42(3)[2016-01-22]. DOI: 10.1029/2005WR004055.
[9] MORO M J, WERE A, VILLAGARCA L, et al. Dew measurement by eddy covariance and wetness sensor in a semiarid ecosystem of SE Spain[J]. Journal of Hydrology, 2007, 335(3): 295-302.
[10] UCLS O, VILLAGARCA L, MORO M, et al. Role of dewfall in the water balance of a semiarid coastal steppe ecosystem[J]. Hydrological Processes, 2014, 28(4): 2271-2280.
[11] 刘小丹, 张克斌, 王黎黎, 等. 封育对半干旱区沙化草地群落特征的影响[J]. 北京林业大学学报, 2015, 37(2): 48-54. [12] ZHA T S, BARR A G, BLACK T A, et al. Carbon sequestration in boreal jack pine stands following harvesting[J]. Global Change Biology, 2009, 15(6):1475-1487.
[13] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration: guidelines for computing crop water requirements (FAO irrigation and drainage paper 56)[M]. Rome: FAO, 1998: 300.
[14] CAMPBELL G S, NORMAN J M. An introduction to environmental biophysics[M]. New York: Springer Science Business Media,1998.
[15] LAWRENCE M G. The relationship between relative humidity and the dewpoint temperature in moist air:a simple conversion and applications[J]. Bulletin of the American Meteorological Society, 2005, 86(2): 225-233.
[16] FALGE E, BALDOCCHI D, OLSON R, et al. Gap filling strategies for long term energy flux data sets[J]. Agricultural Forest Meteorology, 2001, 107(1): 71-77.
[17] 李小梅, 张秋良. 环境因子对兴安落叶松林生态系统CO2 通量的影响[J]. 北京林业大学学报, 2015, 37(8): 31-39. [18] LEE X H. On micrometeorological observations of surface-air exchange over tall vegetation[J]. Agricultural Forest Meteorology, 1998, 91(1-2): 39-49.
[19] KELLIHER F M, HOLLINGER D, SCHULZE E D, et al. Evaporation from an eastern Siberian larch forest[J]. Agricultural and Forest Meteorology, 1997, 85(3-4): 135-147.
[20] YE Y H, ZHOU K, SONG L Y, et al. Dew amounts and its correlations with meteorological factors in urban landscapes of Guangzhou, China[J]. Atmospheric Research, 2007, 86(1):21-29.
[21] RICHARDS K. Observation and simulation of dew in rural and urban environments[J]. Progress in Physical Geography, 2004, 28(1): 76-94.
[22] ZHA T S, BARR A G, KAMP G V D, et al. Interannual variation in evapotranspiration from forest and grassland ecosystems in western Canada in relation to drought[J]. Agricultural and Forest Meteorology, 2010, 150(11):1476-1484.
[23] UCLS O M, MORO M J, VILLAGARCA L, et al. Is dewfall an important source of water in semiarid coastal steppe ecosystems in SE Spain?[C]∥5th International Conference on Fog. Münster: Fog Collection and Dew, 2010.
[24] LEKOUCH I, MUSELLI M, KABBACHI B, et al. Dew, fog, and rain as supplementary sources of water in south-western Morocco[J]. Energy, 2011,36(4): 2257-2265.
[25] SUBRAMANIAM A R, KESAVARAO A V R. Dew fall in sand dune areas of India[J]. International Journal of Biometeorology, 1983, 27(3): 271-280.
[26] HAO X M, LI C, GUO B,et al. Dew formation and its long-term trend in a desert riparian forest ecosystem on the eastern edge of the Taklimakan Desert in China[J]. Journal of Hydrology, 2012, 472-473(5):90-98.
[27] PAN Y X, WANG X P, ZHANG Y F. Dew formation characteristics in a revegetation-stabilized desert ecosystem in Shapotou area, Northern China[J]. Journal of Hydrology, 2010, 387(3): 265-272.
[28] HE S Y, RECHARDS K. The role of dew in the monsoon season assessed via stable isotopes in an alpine meadow in Northern Tibet[J]. Atmospheric Research, 2015, 151:101-109.
[29] SALAU O A, LAWSON T L. Dewfall features of a tropical station: the case of Onne (Port Hartcourt), Nigeria[J]. Theoretical and Applied Climatology, 1986, 37(4): 233-240.
[30] 杨强,查天山,贾昕,等. 花棒茎流对降雨的响应[J].应用生态学报, 2016, 27(3):761-768. -
期刊类型引用(13)
1. 屈柳燕,贾绍凤,李润杰,温军,周秉荣,权晨. 三江源区典型植被蒸散及水量平衡分析. 华北水利水电大学学报(自然科学版). 2024(03): 42-50 . 百度学术
2. 刘延雪,乔长录. 干旱区绿洲膜下滴灌棉田蒸散发. 干旱区研究. 2023(01): 152-162 . 百度学术
3. 冉彬 ,张在勇 ,杨京博 ,许达 ,宫程程 . 毛乌素沙地沙蒿凝结水形成规律及其对水均衡的影响. 农业工程学报. 2023(08): 111-119 . 百度学术
4. 韩春坛,李洪源,陈仁升,刘章文,刘俊峰,阳勇,王希强. 高寒山区凝结水研究进展. 高原气象. 2023(04): 821-832 . 百度学术
5. 谢永玉,陈冰,徐俊增,李萍,方铭琛,陈曦,魏含津,刘笑吟. 小型地中式称重蒸渗仪系统的研制. 水资源与水工程学报. 2022(06): 204-212 . 百度学术
6. 冯天骄,张智起,张立旭,徐炜,贺金生. 干旱半干旱区生态系统凝结水的影响因素及其作用研究进展. 生态学报. 2021(02): 456-468 . 百度学术
7. 马瑞莎,乔长录,葛瑞晨. 膜下滴灌棉田凝结水量研究. 灌溉排水学报. 2021(05): 93-99 . 百度学术
8. 李鹭辰,桂子洋,秦树高,张宇清,刘靓,杨凯捷. 毛乌素沙地4种典型植物叶片凝结水吸收能力及其水分生理响应. 北京林业大学学报. 2021(02): 72-80 . 本站查看
9. 佘映军,齐学斌,韩洋,白芳芳. 蒸渗仪在农业科研上的应用现状及发展趋势. 中国农学通报. 2020(20): 127-135 . 百度学术
10. 原文文,张劲松,孟平,同小娟,周宇,李朋兴. 基于涡度相关法的黄河小浪底人工混交林CH_4通量平均周期的确定. 北京林业大学学报. 2020(10): 55-61 . 本站查看
11. 王忠静,张子雄,索滢. 干旱区凝结水评估及对水量平衡方程影响. 水利学报. 2019(06): 710-720 . 百度学术
12. 何莹莹,于明含,丁国栋,高广磊,赵媛媛,赛克. 基于冠层温度的典型沙生植物土壤水分状况诊断. 中国水土保持科学. 2018(04): 89-96 . 百度学术
13. 鲁笑瑶,卫文婷,曹涵,秦淑静,李思恩. 干旱区凝结水研究进展. 灌溉排水学报. 2018(S2): 102-106 . 百度学术
其他类型引用(13)
计量
- 文章访问数: 2174
- HTML全文浏览量: 287
- PDF下载量: 39
- 被引次数: 26