Short-term effect of increasing nitrogen deposition on greenhouse gas emissions in Zoige wetland, western China.
-
摘要: 为研究若尔盖高寒泥炭湿地温室气体(CO2、CH4、N2O)对氮沉降初期的响应,本研究以若尔盖高寒泥炭湿地为研究对象,设置了对照(0 kg/(hm2a),CK)、低氮(10 kg/(hm2a),LN)、中氮(20 kg/(hm2a),MN)及高氮(80 kg/(hm2a),HN)4个施氮水平,在生长季(59月)每月原位施加NH4NO3进行氮沉降模拟,利用静态箱-气相色谱法观测了温室气体(CO2、CH4、N2O)的排放通量。结果表明:CO2、CH4和N2O在高氮处理下的平均排放通量为(224.96113.875)、(0.1140.002)和(0.0590.003) mg/(m2h),在中氮处理中的平均排放通量分别为(303.80111.397)、(0.1110.002)和(0.0470.004) mg/(m2h),低氮处理中的排放通量均值分别为(212.7315.847)、(0.0830.004)和(0.0320.002) mg/(m2h),均显著高出对照处理相应气体的平均排放通量(P0.05)。不同施氮水平下的CO2、CH4和N2O的生长季累积排放均显著高出对照处理(P0.05)。不同水平氮添加下的温室气体排放增量与土壤NO-3-N含量增量呈显著正相关(P0.05),CO2、CH4排放增量与生物量增量呈显著正相关(P0.05),但温室气体排放增量与土壤温湿度的增量均无显著相关性。此外,氮添加显著增加了湿地温室气体全球增温潜势(P0.05)。研究表明,短期氮添加通过影响土壤有效氮含量和生物量,促进了泥炭湿地土壤的温室气体排放。该研究结果为预测泥炭湿地区域氮沉降可能带来的温室效应和合理保护高寒湿地生态系统提供了重要科学依据。Abstract: Elevated anthropogenic N input could affect the greenhouse gas emissions through influencing the availability of soil nitrogen (N), and ultimately lead to significant changes in the climate and ecological environment. Our experiment was conducted in the Zoige peatland, which is situated in the eastern Qinghai-Tibetan Plateau in China, with pronounced frigid temperate zone, semi damp grass land and humid climate. In order to explore the effect of nitrogen deposition on production and emission of greenhouse gases (CO2, CH4 and N2O) from peatland during its growth cycle (from May to September), four different levels of nitrogen fertilizer application were designed as control (0 kg/(haa), CK), low nitrogen (10 kg/(haa), LN), medium nitrogen (20 kg/(haa), MN) and high nitrogen (80 kg/(haa), HN), and static closed chamber combined with a gas chromatograph technique was used to measure the fluxes of three greenhouse gases. The investigation showed that the mean fluxes of CO2, CH4 and N2O were 224.96113.875, 0.1140.002, 0.0590.003 mg/(m2h) with HN level, 303.80111.397, 0.1110.002, 0.0470.004 mg/(m2h) with MN level and 212.7315.847, 0.0830.004, 0.0320.002 mg/(m2h) with LN level, which were all significantly higher than that of control. N application had a strong promotion to seasonal cumulative emissions of CO2, CH4 and N2O (P0.05). There were significantly positive correlations between increments of greenhouse gas fluxes and soil inorganic nitrogen in N treatments (P0.05), as well as a markedly positive correlation between growth in CO2, CH4 fluxes and biomass increment (P0.05); however, the correlation between incremental greenhouse gases fluxes and soil temperature or moisture factors did not change significantly due to N addition (P0.05). Also, N application significantly increased the global warming potential (GWP) of peatlands (P0.05). These results suggest that the short-term N addition would be likely to stimulate greenhouse gas fluxes in the Zoige peatland by increasing available N content and promoting plant growth. This provides a scientific basis for predicting greenhouse effect caused by N deposition in peatland soil, as well as reasonably protecting the plateau wetland ecosystem.
-
-
[1] CHMURA G L, ANISFELD S C, CAHOON D R, et al. Global carbon sequestration in tidal, saline wetland soils[J]. Global Biogeochemical Cycles, 2003, 17(4)[2016-01-12]. https://www.researchgate.net/publication/228736624. DOI: 10.1029/2002GB001917.
[1] 王德宣,宋长春,王跃思,等.若尔盖高原泥炭沼泽湿地CO2呼吸通量特征[J].生态环境,2005,14(6):880-883. [2] WANG D X, SONG C C, WANG Y S, et al.Carbon dioxide flux from peat mire in Ruoergai plateau[J]. Ecological Environment,2005,14(6):880-883.
[3] BRIDGHAM S, MEGONIGAL P, KELLER J K, et al.The carbon balance of North American wetlands[J].Wetlands,2006,26(4): 889-916.
[4] PEI Z Y, OUYANG H, ZHOU C P, et al.Fluxes of CO2, CH4 and N2O from alpine grassland in the Tibetan Plateau[J]. Journal of Geographical Sciences,2003,13(1): 27-34.
[5] 张岳芳,郑建初,陈留根,等.麦秸还田与土壤耕作对稻季CH4和N2O排放的影响[J].生态环境学报,2009,18(6):2334-2338. [6] ZHANG Y F, ZHENG J C, CHEN L G, et al.Effects of wheat straw returning and soil tillage on CH4 and N2O emissions in paddy season[J]. Journal of Ecological Environment,2009,18(6):2334-2338.
[7] 王长科,罗新正,张华.全球增温潜势和全球温变潜势对主要国家温室气体排放贡献估算的差异[J].气候变化研究进展,2013,9(1):49-54. [8] WANG C K, LUO X Z, ZHANG H. Differences between the shares of greenhouse gas emissions calculated with GTP and GWP for major countries [J]. Research Progress on Climate Change,2013,9(1):49-54.
[9] 王杰,李刚,修伟明,等.氮素和水分对贝加尔针茅草原土壤酶活性和微生物量碳氮的影响[J].农业资源与环境学报,2014,31(3):237-245. [10] WANG J, LI G, XIU W M, et al.Effects of nitrogen and water on soil enzyme activity and soil microbial biomass in Stipa baicalensis Steppe, Inner Mongolia of north China [J]. Journal of Agricultural Resources and Environment,2014,31(3):237-245.
[11] ZHOU X B, ZHANG Y M, DOWNING A. Non-linear response of microbial activity across a gradient of nitrogen addition to a soil from the Gurbantunggut Desert, northwestern China[J]. Soil Biology and Biochemistry,2012,47: 67-77.
[12] 王晖,莫江明,薛璟花,等.氮沉降增加对森林凋落物分解酶活性的影响[J].热带亚热带植物学报,2007,14(6):539-545. [13] WANG H, MO J M, XUE J H, et al.Effects of elevated nitrogen deposition on the activities of enzyme in forest litter decomposition: a review[J]. Journal of Tropical and Subtropical Plants,2007,14(6):539-545.
[14] 吕超群,田汉勤,黄耀.陆地生态系统氮沉降增加的生态效应[J].植物生态学报,2007,31(2): 205-218. [15] L C Q, TIAN H Q, HUANG Y. Ecological effect of increased nitrogen deposition in ecological terrestrial ecsystems[J]. Journal of Plant Ecology, 2007, 31(2): 205-218.
[16] THIRUKKUMARAN C M, PARKINSON D. Microbial respiration, biomass, metabolic quotient and litter decomposition in a lodgepole pine forest floor amended with nitrogen and phosphorous fertilizers[J]. Soil Biology and Biochemistry,2000,32(1): 59-66.
[17] MADRITCH M D, HUNTER M D. Intraspecific litter diversity and nitrogen deposition affect nutrient dynamics and soil respiration[J]. Oecologia, 2003, 136(1): 124-128.
[18] 胡正华,李涵茂,杨燕萍,等.模拟氮沉降对北亚热带落叶阔叶林土壤呼吸的影响[J].环境科学,2010,31(8):1726-1732. [19] HU Z H, LI H M, YANG Y P, et al.Effects of simulated nitrogen deposition on soil respiration in northern subtropical deciduous broadleaved forest[J]. Journal of Environmental Science,2010,31(8):1726-1732.
[20] SCHULZE E D. Biological control of the terrestrial carbon sink[J]. Biogeosciences, 2006, 3(2): 147-166.
[21] SONG Y Y, SONG C C, LI Y C, et al.Short-term effect of nitrogen addition on litter and soil properties in calamagrostis angustifolia freshwater marshes of northeast China[J]. Wetlands, 2013, 33(3): 505-513.
[22] ZHANG L H, SONG C C, NKRUMAH P N. Responses of ecosystem carbon dioxide exchange to nitrogen addition in a freshwater marshland in Sanjiang Plain, northeast China[J]. Environmental Pollution, 2013, 180: 55-62.
[23] WENDEL S, MOORE T, BUBIER J, et al.Experimental nitrogen, phosphorus, and potassium deposition decreases summer soil temperatures, water contents, and soil CO2 concentrations in a northern bog[J]. Biogeosciences,2011,8(3): 585-595.
[24] 牟晓杰,刘兴土,仝川,等.闽江河口短叶茳芏湿地CH4和N2O排放对氮输入的短期响应[J].环境科学,2012,33(7):2482-2489. [25] MOU X J, LIU X T, TONG C, et al.Short-term effects of exogenous nitrogen on CH4 and N2O effluxes from Cyperus malaccensis Marsh in the Min river estuary[J]. Journal of Environmental Science,2012,33(7):2482-2489.
[26] JUUTINEN S, BUBIER J, MOORE T. Responses of vegetation and ecosystem CO2 exchange to 9 years of nutrient addition at Mer Bleue bog[J]. Ecosystems,2010,13(6): 874-887.
[27] SPENCE P L, JORDAN S J. Effects of nitrogen inputs on freshwater wetland ecosystem services: a Bayesian network analysis[J]. Journal of Environmental Management,2013,124: 91-99.
[28] MA W K, BEDARD-HAUGHN A, SICILIANO S D, et al.Relationship between nitrifier and denitrifier community composition and abundance in predicting nitrous oxide emissions from ephemeral wetland soils[J]. Soil Biology and Biochemistry,2008,40(5): 1114-1123.
[29] COMPTON J E, WATRUD L S, PORTEOUS L A, et al.Response of soil microbial biomass and community composition to chronic nitrogen additions at Harvard forest[J]. Forest Ecology and Management,2004,196(1): 143-158.
[30] HOBBIE S E, GOUGH L. Litter decomposition in moist acidic and non-acidic tundra with different glacial histories[J]. Oecologia,2004,140(1): 113-124.
[31] XU X K, INUBUSHI K. Effects of N sources and methane concentrations on methane uptake potential of a typical coniferous forest and its adjacent orchard soil[J]. Biology and Fertility of Soils,2004,40(4): 215-221.
[32] 蔡元锋,贾仲君.土壤大气甲烷氧化菌研究进展[J].微生物学报,2014,54(8):841-853. [33] CAI Y F, JIA Z J. Research progress of atmospheric methane oxidizers in soil[J]. Acta Microbiologica Sinica,2014,54(8):841-853.
[34] MATZNER E, BORKEN W. Do freeze-thaw events enhance C and N losses from soils of different ecosystems? A review[J]. European Journal of Soil Science,2008,59(2): 274-284.
[35] FANG H J, CHENG S L, YU G R, et al.Responses of CO2 efflux from an alpine meadow soil on the Qinghai Tibetan Plateau to multi-form and low-level N addition[J]. Plant and Soil,2012,351(1): 177-190.
[36] 邓昭衡,高居娟,周雨露,等.氮沉降对冻融培养期泥炭土二氧化碳排放的影响[J].土壤通报,2015,46(4):962-966. [37] DENG Z H, GAO J J, ZHOU Y L, et al.Effect of N deposition on CO2 emissions during freezing: thawing incubation period of peat soil[J]. Chinese Journal of Soil Science,2015,46(4):962-966.
[38] 郑莉莉.长期氮素添加对青海海北髙寒草甸生态系统的级联效应[D]. 北京:北京林业大学,2015. [39] ZHENG L L.Cascading effects of long-term fertilization in an alpine meadow ecosystem on the Qinghai-Tibetan Plateau[D]. Beijing: Beijing Forestry University,2015.
[40] 秦晓波,李玉娥,刘克樱,等.不同施肥处理稻田甲烷和氧化亚氮排放特征[J]. 农业工程学报,2006,22(7):143-148. [41] QIN X B, LI Y, LIU K Y, et al.Methane and nitrous oxide emission from paddy field under different fertilization treatments[J].Transactions of the CSAE,2006,22(7):143-148.
[42] FANG H J, CHENG S L, YU G R, et al.Low-level nitrogen deposition significantly inhibits methane uptake from an alpine meadow soil on the Qinghai-Tibetan Plateau[J]. Geoderma, 2014, 213: 444-452.
[43] 鲁如坤.土壤农化分析[M].北京:中国农业科技出版社,2000: 106-289. [44] LU R K. Soil agro-chemistry analysis[M]. Beijing: Chinas Agricultural Science and Technology Press,2000: 106-289.
[45] 窦晶鑫,刘景双,王洋,等.三江平原草甸湿地土壤有机碳矿化对C/N的响应[J].地理科学,2009,29(5):773-778. [46] DOU J X, LIU J S, WANG Y, et al.Effects of amendment C/N ratio on soil organic carbon mineralization of meadow marshes in Sanjiang Plain[J]. Journal of Geographical Science,2009,29(5):773-778.
[47] YUE H W, WANG M M, WANG S P, et al.The microbe-mediated mechanisms affecting topsoil carbon stock in Tibetan grasslands[J].The ISME Journal,2015,9:2012-2020.
[48] 袁颖红,樊后保,刘文飞,等.模拟氮沉降对杉木人工林 (Cunninghamia lanceolata) 土壤酶活性及微生物群落功能多样性的影响[J].土壤,2013,45(1):120-128. [49] YUAN Y H, FAN H B, LIU W F, et al. Effects of simulated nitrogen deposition on soil enzyme activities and microbial community functional diversities in a Chinese fir plantation[J]. Soils,2013,45(1):120-128.
[50] BOWDEN R D, DAVIDSON E A, SAVAGE K, et al.Chronic N additions reduce total soil respiration and microbial respiration in temperate forest soils at the Harvard Forest[J]. Forest Ecology and Management,2004,196(1): 43-56.
[51] 白洁冰,徐兴良,宋明华,等.温度和氮素输入对青藏高原三种高寒草地土壤碳矿化的影响[J].生态环境学报,2011,20(5):855-859. [52] BAI J J, XU X L, SONG M H, et al.Effects of temperature and added nitrogen on carbon mineralization in alpine soil on the Tibetan Plateau[J]. Journal of Ecological Environment,2011,20(5):855-859.
[53] 方华军,程淑兰,于贵瑞,等.大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制[J].生态学报,2014,34(17):4799-4806. [54] FANG H J, CHENG S L, YU G R, et al.Microbial mechanisms responsible for the effects of atmospheric nitrogendeposition on methane uptake and nitrous oxide emission in forest soils: a review[J].Acta Ecological Sinica,2014,34(17):4799-4806.
[55] 曾从盛,王维奇,仝川.不同电子受体及盐分输入对河口湿地土壤甲烷产生潜力的影响[J].地理研究,2008,27(6):1321-1330. [56] ZENG C S, WANG W Q, TONG C. Effects of different expgenous electron acceptors and salt import on methane production potential of estuarine marsh soil[J].Journal of Geographical Research,2008,27(6):1321-1330.
[57] 孟伟庆,吴绽蕾,王中良.湿地生态系统碳汇与碳源过程的控制因子和临界条件[J].生态环境学报,2011,20(8-9):1359-1366. [58] MENG W Q, WU Z L, WANG Z L. Control factors and critical conditions between carbon sinking and sourcing of wetland ecosystem [J]. Journal of Ecological Environment,2011,20(8):1359-1366.
[59] 张丽华,宋长春,王德宣,等.外源氮对沼泽湿地CH4和N2O通量的影响[J].生态学报,2007,27(4):1442-1449. [60] ZHANG L H, SONG C C, WANG D X, et al.Effects of exogenous nitrogen input on the CH4 and N2O fluxes in freshwater marshes[J]. Acta Ecologica Sinica,2007,27(4):1442-1449.
[61] NYKNEN H, VASANDER H, HUTTUNEN J T, et al.Effect of experimental nitrogen load on methane and nitrous oxide fluxes on ombrotrophic boreal peatland[J].Plant and Soil,2002,242(1): 147-155.
[62] MINAMIKAWA K, SAKAI N, HAYASHI H. The effects of ammonium sulfate application on methane emission and soil carbon content of a paddy field in Japan[J]. Agriculture, Ecosystems Environment,2005,107(4): 371-379.
[63] LI K H, GONG Y M, SONG W, et al.Responses of CH4, CO2 and N2O fluxes to increasing nitrogen deposition in alpine grassland of the Tianshan Mountains[J]. Chemosphere,2012,88(1):140-143.
[64] TATE K R, ROSS D J, SCOTT N A, et al.Postharvest patterns of carbon dioxide production, methane uptake and nitrous oxide production in a Pinus radiata D. Don plantation[J]. Forest Ecology and Management,2006,228(1): 40-50.
[65] MALJANEN M, JOKINEN H, SAARI A, et al.Methane and nitrous oxide fluxes, and carbon dioxide production in boreal forest soil fertilized with wood ash and nitrogen[J]. Soil Use and Management,2006,22(2): 151-157.
[66] 邓昭衡.外源氮输入和冻融对泥炭土温室气体排放的影响[D].北京:北京林业大学,2015. [67] DENG Z H. Effects of exogenous nitrogen and freezing-thawing cycles on greenhouse gas emissions in peat soil[D]. Beijing: Beijing Forestry University, 2015.
[68] 马维伟.尕海湿地生态系统土壤特征及温室气体排放研究[D]. 兰州:甘肃农业大学,2014: 68-78. [69] MA W W. The soil characteristics and emission of greenhouse gases from the Gahai wetland ecosystem[D]. Lanzhou: Gansu Agricultural University,2014: 68-78.
[70] 胡敏杰,仝川.氮输入对天然湿地温室气体通量的影响及机制[J].生态学杂志,2014,33(7):1969-1976. [71] HU M J, TONG C. Effects of nitrogen enrichment on the greenhouse gas fluxes in natural wetlands and the associated mechanisms: a review[J]. Chinese Journal of Ecology,2014,33(7):1969-1976.
[72] 刘晓雨,李志鹏,潘根兴,等.长期不同施肥下太湖地区稻田净温室效应和温室气体排放强度的变化[J].农业环境科学学报,2011,30(9):1783-1790. [73] LIU X Y, LI Z P, PAN G X, et al.Greenhouse gas emission and C intensity for a long-term fertilization rice paddy in Tai lake region, China [J]. Journal of Agricultural Environment Science,2011,30(9):1783-1790.
[74] 史昊先,高晓霞,于景丽,等.外源氮添加对湿地土壤N2O排放量的影响[J].农业资源与环境学报,2014,31(5):456-460. [75] SHI H X, GAO X X, YU J L, et al.Effect of exogenous nitrogen addition on nitrous oxide N2O emissions from wetland soil[J].Journal of Agricultural Resources and Environment Science,2014,31(5):456-460.
[76] DENG B L, LI Z Z, ZHANG L, et al.Increases in soil CO2 and N2O emissions with warming depend on plant species in restored alpine meadows of Wugong Mountain, China[J]. Journal of Soils and Sediments,2015[2016-01-08].http:∥www.researchgate.net/pulication/284218858. DOI: 10.1007/s11368-015-1307-z.
[77] 邹建文,黄耀,宗良纲,等.不同种类有机肥施用对稻田CH4和N2O 排放的综合影响[J].环境科学,2003,24(4):7-12. [78] ZHOU J W, HUANG Y, ZONG L G, et al.Integrated effect of incorporation with different organic manures on CH4 and N2O emissions from rice paddy[J]. Journal of Environmental Science,2003,24(4):7-12.
[79] 王长科,罗新正,张华.全球增温潜势和全球温变潜势对主要国家温室气体排放贡献估算的差异[J].气候变化研究进展,2013,9(1):49-54. [80] WANG C K, LUO X Z, ZHANG H. Global warming potential and global temperature potential contribution to major national greenhouse gas emissions to estimate differences[J]. Progressus Inquisitiones de Mutatione Climatis,2013,9(1):49-54.
[81] Intergovernment Panel on Climate Change. Climate change 2007: the physical science basis[R]. New York: Cambridge University Press, 2007.
[82] ARONSON E, HELLIKER B R. Methane flux in non-wetland soils in response to nitrogen addition: a meta-analysis[J]. Ecology,2010,91(11): 3242-3251.
[83] LU M, YANG Y H, LUO Y Q, et al.Responses of ecosystem nitrogen cycle to nitrogen addition: a meta-analysis[J]. New Phytologist,2011,189(4): 1040-1050.
[84] LIU L L, GREAVER T L. A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emissions[J]. Ecology Letters,2009,12(10): 1103-1117.
-
期刊类型引用(7)
1. 李晓宇,杨成超,李文颖,张蕾. 不同杨树品种苗期对镉胁迫的差异性分析. 中南林业科技大学学报. 2024(03): 11-21 . 百度学术
2. 李晓宇,李文颖,杨成超. 镉胁迫下中辽1号杨转录组分析. 西北农林科技大学学报(自然科学版). 2024(06): 29-39 . 百度学术
3. 黎标,郭佳源,谭璐,王凡,杨海君,谭菊. 地肤对土壤镉胁迫的生理生化响应. 湖南农业科学. 2024(05): 43-50 . 百度学术
4. 杨晓燕,熊炀,宫雪,钟永达,陈彩慧,胡丽平,余发新. 亚热带地区主要阔叶用材树种的非生物胁迫研究进展. 西南林业大学学报(自然科学). 2023(03): 191-204 . 百度学术
5. 胡佳瑶,王悟敏,匡雪韶,刘文胜. 镉胁迫下青葙种子萌发及幼苗生理特性. 草业科学. 2022(07): 1391-1398 . 百度学术
6. 宋润先,李翔,毛秀红,王丽,陈香丽,姚俊修,赵曦阳,李善文. 镉胁迫下美洲黑杨无性系‘中菏1号’转录组分析. 北京林业大学学报. 2021(07): 12-21 . 本站查看
7. 苑正赛,乔艳辉,王丽,王相娥,姚俊修,李善文,韩友吉,董玉峰. 镉胁迫对黑杨派无性系生物量及镉离子含量的影响. 北京林业大学学报. 2021(12): 38-46 . 本站查看
其他类型引用(3)
计量
- 文章访问数: 1807
- HTML全文浏览量: 238
- PDF下载量: 43
- 被引次数: 10