高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

北京市16种树木吸附大气颗粒物的差异及颗粒物研究

史军娜 张罡 安海龙 曹学慧 刘超 尹伟伦 夏新莉

史军娜, 张罡, 安海龙, 曹学慧, 刘超, 尹伟伦, 夏新莉. 北京市16种树木吸附大气颗粒物的差异及颗粒物研究[J]. 北京林业大学学报, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053
引用本文: 史军娜, 张罡, 安海龙, 曹学慧, 刘超, 尹伟伦, 夏新莉. 北京市16种树木吸附大气颗粒物的差异及颗粒物研究[J]. 北京林业大学学报, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053
SHI Jun-na, ZHANG Gang, AN Hai-long, CAO Xue-hui, LIU Chao, YIN Wei-lun, XIA Xin-li.. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles.[J]. Journal of Beijing Forestry University, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053
Citation: SHI Jun-na, ZHANG Gang, AN Hai-long, CAO Xue-hui, LIU Chao, YIN Wei-lun, XIA Xin-li.. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles.[J]. Journal of Beijing Forestry University, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053

北京市16种树木吸附大气颗粒物的差异及颗粒物研究

doi: 10.13332/j.1000-1522.20160053
基金项目: 

林业公益性行业科研专项(201304301)。

详细信息
    作者简介:

    史军娜, 实验师。主要研究方向: 植物抗逆生理生态学。Email:shijn@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学公共分析测试中心。
    责任作者: 夏新莉,教授,博士生导师。主要研究方向:植物逆境生理学和分子生物学。Email: xiaxl@bjfu.edu.cn 地址: 100083北京市海淀区清华东路35号北京林业大学生物科学与技术学院。

    史军娜, 实验师。主要研究方向: 植物抗逆生理生态学。Email:shijn@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学公共分析测试中心。
    责任作者: 夏新莉,教授,博士生导师。主要研究方向:植物逆境生理学和分子生物学。Email: xiaxl@bjfu.edu.cn 地址: 100083北京市海淀区清华东路35号北京林业大学生物科学与技术学院。

Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles.

  • 摘要: 为选择吸附颗粒物能力强的绿化树种修复大气颗粒物污染,以北京市西直门交通枢纽的16种常见绿化树种为材料,利用扫描电镜观察叶片表面的微观形貌和颗粒物的形态,并用ImageJ软件对颗粒物的粒径分布进行统计。研究发现,16种树叶表面形貌差异较大,阔叶树种叶片上表面形态比较复杂,有沟槽、褶皱、绒毛和蜡质等,下表面主要有气孔、腺毛、绒毛等,形态相对较单一。针叶树种叶表面形态相对简单,有少量褶皱,但是叶表面分泌大量油脂。叶片表面附着的大部分颗粒物表面粗糙且形态不规则,粒径小于2.5 μm的颗粒物在3种粒径中占比最大。通过扫描电镜X射线能谱仪对颗粒物的元素进行分析发现,组成颗粒物的元素主要有C、N、O、Si、Ca、Fe,及少量的Na、Mg、Pb、Ni、Cd和Pd等元素。从颗粒物来源分析,主要含有C、N、O、Na、Mg、Si和Ca等元素的颗粒物,可能主要来自自然界,而Pb、Fe、Ni、Cd和Pd等元素含量较高的颗粒物可能主要来自人类活动的产物。叶表面颗粒物附着密度结果表明,圆柏和油松较其他树种叶片颗粒附着密度大,其余较大的树种依次是栾树、国槐和榆叶梅等。研究结果为揭示树木吸收大气颗粒物的机制及合理选择园林绿化树种提供了重要的理论科学依据。
  • [1] 北京市环境保护局.2013北京市环境状况公报[EB/OL] .(2015-09-10)http:∥www.bjepb.gov.cn.
    [2] Beijing Municipal Environmental Protection Bureau. Beijing Environmental Statement 2013[EB/OL] . (2015-09-10) http:∥www.bjepb.gov.cn.
    [3] LOPEZ A, MATHERS C, EZZAT M, et al. Global burden of disease and risk factors [M] . NewYork: A Copublication of Oxford University Press and The World Bank, 2010.
    [4] WANG B, ZHANG W K, NIU X, et al. Particulate matter adsorption capacity of 10 evergreen species in Beijing [J] . Environmental Science, 2015, 36 (2): 408-414.
    [5] NOWAK D J, CRANE D E, STEVENS J C. Air pollution removal by urban trees and shrubs in the United States [J] .Urban For Urban Green, 2006, 4(3-4):115-123.
    [6] ZHAO S T, LI X Y, LI Y M. Capability of common garden plants in Beijing to retain PM2.5[J] . Journal of Northwest Forestry University, 2015,31(2):280-287.
    [7] WANG L, GAO S Y, LIU L Y, et al. Atmospheric particle-retaining capability of eleven garden plant species in Beijing [J] . Chinese Journal of Applied Ecology,2006, 17(4) :597-601.
    [8] MCDONALD A G, BEALEY W J, FOWLER D, et al. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations [J] . Atmospheric Environment, 2007, 41 (38): 8455-8467.
    [9] ESCOBEDO F J, WAGNER J E, NOWAK D J, et al. Analyzing the cost effectiveness of Santiago, Chile's policy of using urban forests to improve air quality[J] . Journal of Environmental Management, 2008, 86:148-157.
    [10] AN H L, LIU Q Q, CAO X H, et al. Absorption features of PAHs in leaves of common tree species at different PM2.5 polluted places [J] . Journal of Beijing Forestry University, 2016, 38(1):59-66.
    [11] CAVANAGH J A E, PEYMAN Z R, WILSON J G. Spatial attenuation of ambient particulate matter air pollution within an urbanized native forest patch [J] . Urban for Urban Green, 2009, 8:21-30.
    [12] YANG F M, HE K B, MA Y L, et al. Characteristics and sources of trace elements in ambient PM2.5 in Beijing [J] . Chinese Journal of Environmental Science ,2003,24 (6): 33-37.
    [13] 王兵,张维康,牛香,等. 北京10个常绿树种颗粒物吸附能力研究[J] . 环境科学,2015,36(2):408-414.
    [14] 赵松婷,李新宇,李延明.北京市常用园林植物滞留PM2.5能力的研究[J] .西北林学院学报,2015,31(2):280-287.
    [15] COLLINS T. Image J for microscopy [J] . Bio Techniques, 2007, 43:25-30.
    [16] OTTEL M, VAN BOHEMEN H, FRAAIJ A. Quantifying the deposition of particulate matter on climber vegetation on living walls [J] . Ecological Engineering, 2010, 36:154-162.
    [17] STERNBERG T, VILES H, CATHERSIDES A, et al. Dust particulate absorption by ivy (Hedera helix L.) on historic walls in urban environments[J] . Science of the Total Environment, 2010, 409:162-168.
    [18] MARSZALEK M. Application of optical microscopy and scanning electron microscopy to the study of stone weathering: a cracow case study [J] . International Journal of Architectural Heritage, 2008, 2: 83-92.
    [19] 王蕾,高尚玉,刘连友,等.北京市11种园林植物滞留大气颗粒物能力研究[J] .应用生态学报,2006,17(4):597-601.
    [20] 安海龙,刘庆倩,曹学慧,等. 不同PM2.5污染区常见树种叶片对PAHs的吸收特征分析[J] . 北京林业大学学报,2016, 38(1):59-66.
    [21] 杨复沫,贺克斌,马永亮,等. 北京大气PM2.5中微量元素的浓度变化特征与来源[J] .环境科学,2003,24 (6): 33-37.
    [22] WANG L, LIU L Y, GAO S Y, et al. Physicochemical characteristics of ambient particles settling upon leaf surface of urban plants in Beijing[J] . Journal of Environmental Science, 2006, 18(5): 921-926.
    [23] TEPER E. Dust-particle migration around flotation tailings ponds: pine needles as passive samplers [J] . Environmental of Monitoring Assessment, 2009, 154: 383-391.
    [24] POWE N, WILLIS K. Mortality and morbidity benefits of air pollution (SO2 and PM10) absorption attributable to woodland in Britain [J] . Journal of Environmental Management, 2004, 70: 119-128.
    [25] DE KOK T, DRIECE H, HOGERVOST J, et al. Toxicological assessment of ambient and traffic-related particulate matter: a review of recent studies [J] . Mutation Research, 2006, 613:103-122.
    [26] SEARLE D E. The comparative effects of diesel and coal particulate matter on the deterioration of Hollington sandstone and Portland limestone [D] . Wolverhampton: University of Wolverhampton, 2001.
    [27] TERZAGHI E, WILD E, ZACCHELLO G, et al. Forest filter effect: role of leaves in capturing/releasing air particulate matter and its associated PAHs [J] . Atmospheric Environment, 2013, 74:378-384.
    [28] SB A, POPEK R, NAWROT B, et al. Plant species differences in particulate matter accumulation on leaf surface[J] . Science of the Total Environment, 2012, 427-428: 347-354.
    [29] BECKETT K P, FREER-SMITH P H, TAYLOR G. Urban woodlands: the role in reducing the effects of particulate pollution [J] . Environmental Pollution, 1998, 99(3):347-360.
    [30] TALLIS M, TAYLOR G, SINNETT D, et al. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments[J] .Landscape and Urban Planning, 2011, 103(2):129-138.
    [31] BECHETT K P, FREER-SMITH P H, TAYLOR G. Effective tree species for local air quality management [J] . Journal of Arboriculture, 2000, 26: 12-19.
    [32] HWANG H J, YOOK S J, AHN K H. Experimental investigation of submicron and ultrafine soot particles by tree leaves [J] . Atmospheric Environment, 2011, 45: 6987-6994.
  • [1] 詹航, 牛树奎, 王博.  北京地区8种树种枯死可燃物含水率预测模型及变化规律 . 北京林业大学学报, 2020, 42(6): 80-90. doi: 10.12171/j.1000-1522.20190370
    [2] 李松阳, 余杭, 罗清虎, 刘颖, 贺静雯, 林勇明, 王道杰, 李键.  洪涝诱发灾害干扰下受损恢复林地土壤颗粒的组成变化特征及多重分形分析 . 北京林业大学学报, 2020, 42(8): 112-121. doi: 10.12171/j.1000-1522.20190388
    [3] 陈莹, 董灵波, 刘兆刚.  帽儿山天然次生林主要林分类型最优树种组成 . 北京林业大学学报, 2019, 41(5): 118-126. doi: 10.13332/j.1000-1522.20190013
    [4] 陈宇轩, 高广磊, 张英, 丁国栋, 朴起亨, 赵洋, 王陇.  呼伦贝尔沙地风沙土粒径分布特征 . 北京林业大学学报, 2019, 41(8): 124-130. doi: 10.13332/j.1000-1522.20180348
    [5] 李茜, 郄光发, 姜莎莎, 张喆, 李明霞.  2006—2016年间北京五环内居住区绿地树种组成变化 . 北京林业大学学报, 2018, 40(7): 9-17. doi: 10.13332/j.1000-1522.20170381
    [6] 陈贝贝, 王凯, 倪瑞强, 程艳霞.  长白山针阔混交林乔木幼苗组成与空间分布 . 北京林业大学学报, 2018, 40(2): 68-75. doi: 10.13332/j.1000-1522.20170370
    [7] 马文梅, 武亚楠, 张振明.  降雨对植物叶表面颗粒物的淋洗作用 . 北京林业大学学报, 2018, 40(8): 50-55. doi: 10.13332/j.1000-1522.20170376
    [8] 段文军, 王成, 张昶, 宋阳, 郝泽周, 徐心慧, 金一博, 王子研.  夏季3种生境森林内空气颗粒物变化特征 . 北京林业大学学报, 2017, 39(5): 73-81. doi: 10.13332/j.1000-1522.20160358
    [9] 张罡, 安海龙, 史军娜, 刘超, 田菊, 郭惠红, 夏新莉, 尹伟伦.  欧美杨对不同粒径氧化锌颗粒物的吸附与吸收能力 . 北京林业大学学报, 2017, 39(4): 46-54. doi: 10.13332/j.1000-1522.20160376
    [10] 张桐, 洪秀玲, 孙立炜, 刘玉军.  6种植物叶片的滞尘能力与其叶面结构的关系 . 北京林业大学学报, 2017, 39(6): 70-77. doi: 10.13332/j.1000-1522.20170012
    [11] 王慧, 刘庆倩, 安海龙, 刘超, 郭惠红, 夏新莉, 尹伟伦.  城市环境中毛白杨和油松叶片表面颗粒污染物的观察 . 北京林业大学学报, 2016, 38(8): 28-35. doi: 10.13332/j.1000-1522.20160065
    [12] 洪秀玲, 杨雪媛, 杨梦尧, 仲禹璇, 李辰, 张桐, 刘玉军.  测定植物叶片滞留PM2.5等大气颗粒物质量的方法 . 北京林业大学学报, 2015, 37(5): 147-154. doi: 10.13332/j.1000-1522.20140365
    [13] 赵冰清, 王云琦, 赵晨曦, 余蔚青, 刘辉.  重庆缙云山4种典型林分的大气颗粒物浓度差异及不同大气条件影响研究 . 北京林业大学学报, 2015, 37(8): 76-82. doi: 10.13332/j.1000-1522.20150008
    [14] 孙素琪, 王云琦, 王玉杰, 张会兰, 于摇雷, 唐晓芬, 朱锦奇, 周彬.  缙云山大气氮湿沉降组成及其变化特征 . 北京林业大学学报, 2013, 35(4): 47-54.
    [15] 王晓丽, 牛树奎, 马钦彦, 刘艳红, 阚振国.  北京地区主要针叶林易燃可燃物垂直分布 . 北京林业大学学报, 2009, 31(2): 31-35.
    [16] 周宇峰, 周国模, 余树全, 徐小军, 金伟.  木荷林分可燃物载量空间分布的研究 . 北京林业大学学报, 2008, 30(6): 99-106.
    [17] 刘丽娜, 徐程扬, 段永宏, 周睿智, 代向阳.  北京市3种针叶绿化树种根系结构分析 . 北京林业大学学报, 2008, 30(1): 34-39.
    [18] 姜萍, 叶吉, 王绍先, 冯秀春, 黄祥童, 牛立君, 吴钢, .  长白山南坡森林群落组成、结构以及树种多样性的垂直分布 . 北京林业大学学报, 2008, 30(增刊1): 258-262.
    [19] 李永慈, 蒋佳荔, 柳新伟, 孙宇瑞, 李绍才, 张金凤, 谢响明, 高鹏, 盖颖, 李云成, 朱妍, 王盛萍, 张学俭, 罗菊春, 张文娟, 侯旭, 王岩, 冶民生, 贺庆棠, 何磊, 陆佩玲, 吕建雄, 廖学品, 吴玉英, 孙海龙, 崔保山, 何静, 马道坤, 关文彬, 申卫军, 冯仲科, 成仿云, 昌明, 唐守正, 王文棋, 张华丽, 张志强, 李吉跃, 康向阳, 静洁, 关毓秀, 张平冬, 张桂莲, 路婷, 于晓南, 李小飞, 史剑波, 杨志荣, 赵广杰, 蒋湘宁, 吴斌, 石碧, 何权, 孙阁, 王军辉, 马克明, 王尚德, 赵燕东, 汪燕, 张满良, 彭少麟, 蒲俊文, 孙晓霞, 陈永国, 余新晓, 林威, 胡文忠, 刘国华, 汪西林.  北京六个绿化树种盆栽蒸腾耗水量的比较研究 . 北京林业大学学报, 2006, 28(1): 65-70.
    [20] 李利平, 谢力生, 包仁艳, 程广有, 吕建雄, 李红, 贺康宁, 高莉萍, 赵东, 王继强, 周存宇, 王跃思, 孙仁山, 李世荣, 于志明, 向仕龙, 包满珠, 高峰, 李文彬, 周国逸, 李吉跃, 殷亚方, 高林, 邢韶华, 姜春宁, 孙扬, 田勇臣, 赵有科, 郑彩霞, 葛春华, 刘娟娟, 王迎红, 曹全军, 孙磊, 史常青, 赵勃, 周心澄, 孙艳玲, 高亦珂, 华丽, 姜笑梅, 王清春, 唐晓杰, 丁坤善, 张德强, 张启翔, 崔国发, 刘世忠, .  八个绿化树种水分状况与水力结构的季节变化 . 北京林业大学学报, 2005, 27(4): 43-48.
  • 加载中
计量
  • 文章访问数:  678
  • HTML全文浏览量:  100
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-10
  • 刊出日期:  2016-12-31

北京市16种树木吸附大气颗粒物的差异及颗粒物研究

doi: 10.13332/j.1000-1522.20160053
    基金项目:

    林业公益性行业科研专项(201304301)。

    作者简介:

    史军娜, 实验师。主要研究方向: 植物抗逆生理生态学。Email:shijn@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学公共分析测试中心。
    责任作者: 夏新莉,教授,博士生导师。主要研究方向:植物逆境生理学和分子生物学。Email: xiaxl@bjfu.edu.cn 地址: 100083北京市海淀区清华东路35号北京林业大学生物科学与技术学院。

    史军娜, 实验师。主要研究方向: 植物抗逆生理生态学。Email:shijn@bjfu.edu.cn 地址:100083北京市海淀区清华东路35号北京林业大学公共分析测试中心。
    责任作者: 夏新莉,教授,博士生导师。主要研究方向:植物逆境生理学和分子生物学。Email: xiaxl@bjfu.edu.cn 地址: 100083北京市海淀区清华东路35号北京林业大学生物科学与技术学院。

摘要: 为选择吸附颗粒物能力强的绿化树种修复大气颗粒物污染,以北京市西直门交通枢纽的16种常见绿化树种为材料,利用扫描电镜观察叶片表面的微观形貌和颗粒物的形态,并用ImageJ软件对颗粒物的粒径分布进行统计。研究发现,16种树叶表面形貌差异较大,阔叶树种叶片上表面形态比较复杂,有沟槽、褶皱、绒毛和蜡质等,下表面主要有气孔、腺毛、绒毛等,形态相对较单一。针叶树种叶表面形态相对简单,有少量褶皱,但是叶表面分泌大量油脂。叶片表面附着的大部分颗粒物表面粗糙且形态不规则,粒径小于2.5 μm的颗粒物在3种粒径中占比最大。通过扫描电镜X射线能谱仪对颗粒物的元素进行分析发现,组成颗粒物的元素主要有C、N、O、Si、Ca、Fe,及少量的Na、Mg、Pb、Ni、Cd和Pd等元素。从颗粒物来源分析,主要含有C、N、O、Na、Mg、Si和Ca等元素的颗粒物,可能主要来自自然界,而Pb、Fe、Ni、Cd和Pd等元素含量较高的颗粒物可能主要来自人类活动的产物。叶表面颗粒物附着密度结果表明,圆柏和油松较其他树种叶片颗粒附着密度大,其余较大的树种依次是栾树、国槐和榆叶梅等。研究结果为揭示树木吸收大气颗粒物的机制及合理选择园林绿化树种提供了重要的理论科学依据。

English Abstract

史军娜, 张罡, 安海龙, 曹学慧, 刘超, 尹伟伦, 夏新莉. 北京市16种树木吸附大气颗粒物的差异及颗粒物研究[J]. 北京林业大学学报, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053
引用本文: 史军娜, 张罡, 安海龙, 曹学慧, 刘超, 尹伟伦, 夏新莉. 北京市16种树木吸附大气颗粒物的差异及颗粒物研究[J]. 北京林业大学学报, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053
SHI Jun-na, ZHANG Gang, AN Hai-long, CAO Xue-hui, LIU Chao, YIN Wei-lun, XIA Xin-li.. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles.[J]. Journal of Beijing Forestry University, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053
Citation: SHI Jun-na, ZHANG Gang, AN Hai-long, CAO Xue-hui, LIU Chao, YIN Wei-lun, XIA Xin-li.. Differences in atmospheric particle accumulation on leaf surface in sixteen tree species in Beijing and characteristics of particles.[J]. Journal of Beijing Forestry University, 2016, 38(12): 84-91. doi: 10.13332/j.1000-1522.20160053
参考文献 (32)

目录

    /

    返回文章
    返回