• Scopus收录期刊
  • CSCD(核心库)来源期刊
  • 中文核心期刊
  • 中国科技核心期刊
  • F5000顶尖学术来源期刊
  • RCCSE中国核心学术期刊
高级检索

黑土区坡耕地与坡林地表土团聚体有机碳库差异

李露, 曹伟, 赵鹏志, 王恩姮

李露, 曹伟, 赵鹏志, 王恩姮. 黑土区坡耕地与坡林地表土团聚体有机碳库差异[J]. 北京林业大学学报, 2016, 38(12): 46-53. DOI: 10.13332/j.1000-1522.20160078
引用本文: 李露, 曹伟, 赵鹏志, 王恩姮. 黑土区坡耕地与坡林地表土团聚体有机碳库差异[J]. 北京林业大学学报, 2016, 38(12): 46-53. DOI: 10.13332/j.1000-1522.20160078
LI Lu, CAO Wei, ZHAO Peng-zhi, WANG En-heng.. Differences of soil organic carbon storage in surface soil aggregates between sloping farmland and sloping forestland in black soil region.[J]. Journal of Beijing Forestry University, 2016, 38(12): 46-53. DOI: 10.13332/j.1000-1522.20160078
Citation: LI Lu, CAO Wei, ZHAO Peng-zhi, WANG En-heng.. Differences of soil organic carbon storage in surface soil aggregates between sloping farmland and sloping forestland in black soil region.[J]. Journal of Beijing Forestry University, 2016, 38(12): 46-53. DOI: 10.13332/j.1000-1522.20160078

黑土区坡耕地与坡林地表土团聚体有机碳库差异

基金项目: 

“十二五”国家科技支撑计划课题(2015BAD07B05)、国家自然科学青年科学基金项目(41302222)、林业公益性行业科研专项(201404202)、大学生创新训练计划项目(201410225067)。

详细信息
    作者简介:

    李露。主要研究方向:土壤侵蚀与土地生产力恢复。Email: 296179031@qq.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。
    责任作者: 王恩姮,副教授。主要研究方向:土壤侵蚀与水土保持。 Email: enheng_wang@nefu.edu.cn 地址:同上。

    李露。主要研究方向:土壤侵蚀与土地生产力恢复。Email: 296179031@qq.com 地址:150040黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院。
    责任作者: 王恩姮,副教授。主要研究方向:土壤侵蚀与水土保持。 Email: enheng_wang@nefu.edu.cn 地址:同上。

Differences of soil organic carbon storage in surface soil aggregates between sloping farmland and sloping forestland in black soil region.

  • 摘要: 以东北黑土区典型坡耕地(玉米)和坡林地(退耕还落叶松林和樟子松林)表层土壤为研究对象,分别在坡上、坡中上、坡中、坡中下、坡下5个坡位设置取样点采集非原状土,风干后将土壤筛分为2~5 mm、1~2 mm、0.5~1 cm、0.25~0.5 mm、0.25 mm 5个粒级团聚体,分别计算每个粒级土壤风干团聚体所占比例,测定各粒级土壤风干团聚体有机碳含量,并以此为基础计算土壤团聚体有机碳贮量。通过对比不同坡位、各粒级风干团聚体组成及其有机碳含量与贮量变化规律,探明黑土区不同土地利用方式下坡地土壤团聚体有机碳库对不同侵蚀类型的响应特征。结果表明:坡耕地土壤团聚体迁移、沉积过程不同于坡林地,耕地土壤2 mm团聚体的组成比例显著高于2种林地,并在坡下达到最高值(70.30%);有机碳含量均随团聚体粒级减小逐渐增加,樟子松林地内各粒级有机碳含量(25.57~142.60 g/kg)显著高于耕地(22.58~30.06 g/kg)和退耕还落叶松林地(21.58~66.53 g/kg);坡林地土壤团聚体有机碳贮量由坡上至坡下逐渐增加,相同坡位处土壤团聚体有机碳贮量均为樟子松林地退耕还落叶松林地耕地。研究结果证实了黑土区耕作侵蚀的存在及其对土壤团聚体、团聚体有机碳库分布的影响,同时印证了退耕还林是减缓坡地黑土耕作侵蚀、提升有机碳库的长效途径。
    Abstract: A typical sloping field in the black soil region of northeastern China was selected to analyze characteristics of soil aggregate composition and soil organic carbon of different size fractions under three different soil surface conditions, namely, sloping farmland, sloping forestland of larch (Larix gmelinii) converted from cultivated land, and sloping forestland of Mongolian pine (Pinus sylvestris var. mongolica). The sampling sites were situated at upper slope, upper to middle slope, middle slope, middle to lower slope, and lower slope positions. After air drying, the soil samples were sieved to 2-5 mm, 1-2 mm, 0.5-1 mm, 0.25-0.5 mm and 0.25 mm size classes and then their proportions were calculated. Soil organic carbon content was measured by vario TOC instrument manufactured by Elementar Company, and then the soil organic carbon storage of each aggregate size class and total aggregates was calculated. Results showed that: the transportation and deposition processes of soil aggregates in farmland were different from those in forestland mainly because of tillage effects. Compared with forestland, the proportion of soil aggregates 2 mm in farmland was significantly higher, especially in the lower slope position with a proportion of 70.30%. For all three types of sloping lands, soil organic carbon content of aggregates increased with their diameter decreasing. The most pronounced difference of soil organic carbon content was found in Mongolian pine forestland (25.57-142.60 g/kg), which remained highest in all positions compared with sloping farmland (22.58-30.06 g/kg) and sloping larch forestland (21.58-66.53 g/kg). Soil organic carbon storage showed a trend of increasing from upper to lower slope position in forestland; in the same slope position, it was the highest in the Mongolian pine forestland, followed by larch forestland, and sloping farmland in the last place. The results confirm the existence of tillage erosion in sloping land of this area as well as its effects on the redistribution of soil organic carbon. It also suggests that converting cultivated land to forest plays an important role as a type of measure to reverse ecological destruction and maintain higher productivity of black soil in the long run.
  • [1]

    YU L, ZHANG B. The degradation situations of black soil in China and its prevention and counter measures[J] . Journal of Arid Land Resources and Environment, 2004, 18(1): 99-103.

    [1] 于磊, 张柏.中国黑土退化现状与防治对策[J] . 干旱区资源与环境, 2004, 18(1): 99-103.
    [2]

    TISDALL J M, OADES J M. Organic matter and water stable aggregates in soils[J] . Journal of Soil Science, 1982, 33(2): 141-163.

    [2]

    ZHANG X C, SHAO M A. Soil nitrogen and organic matte losses under water erosion[J] . Journal of Applied Ecology, 2000, 11(2): 231-234.

    [3]

    OADES J M, WATERS J M. Aggregate hierarchy in soils[J] . Australian Journal of Soil Research, 1991, 29(2): 815-828.

    [3]

    ZHAO C Y, LI L . Composition of stable micro-aggregates in the soil of Lanzhou suburbs[J] . Journal of Lanzhou University (Natural Science Edition), 2003, 39(6): 90-94.

    [4] 张兴昌, 邵明安. 水蚀条件下不同土壤氮素和有机质流失规律[J] . 应用生态学报, 2000, 11(2): 231-234.
    [4]

    HAN X H, TONG X G, YANG G H, et al. Difference analysis of soil organic carbon pool in returning farmland to forest in loess hilly area[J] . Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(12): 223-229.

    [5]

    WANG S Q, ZHOU C H, LI K R, et al. Analysis on spatial distribution characteristics of soil organic carbon reservoir in China[J] . Acta Geographica Sinica, 2000, 55(5): 533-544.

    [5] 赵传燕, 李林. 兰州市郊区土壤水稳定性微团聚体的组成分析[J] . 兰州大学学报(自然科学版), 2003, 39(6): 90-94.
    [6]

    GUBER A K, PACHEPSKY Y A, LEVKOVSKY E V. Fractal mass-size scaling of wetting soil aggregates[J] . Ecological Modelling, 2004, 182(3-4): 317-322.

    [6]

    LIU Y, LI S Q, SHAO M A, et al. Distribution of organic carbon pools in different sizes of soil aggregates in Loess Plateau[J] . Chinese Journal of Applied Ecology, 2006, 17(6): 1003-1008.

    [7]

    LI H X, WANG B, WANG Y J, et al. Impact of different forest types onstability and organic carbon of soil aggregates[J] . Journal of Beijing Forestry University, 2016, 38(5): 84-91.

    [7]

    SIX J, ELLIOTT E T, PAUSTIAN K. Aggregate and soil organic matter dynamics under conventional and no-tillage systems[J] . Soil Science Society of America Journal, 1999, 63(5): 1350-1358.

    [8]

    FANG H J, YANG X M, ZHAGN X P, et al. Spatial distribution of particulate organic carbon and aggregate associated carbon in topsoil of a sloping farmland in the black soil region, Northeast China[J] . Acta Ecologica Sinica, 2006, 26(9): 2847-2853.

    [8]

    SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J] . Soil Biology Biochemistry, 2000, 32(14): 2099-2103.

    [9]

    LIANG A Z, ZHANG X P, YANG X M, et al. Short-term effects of tillage on soil organic carbon storage in the plow layer of black soil in northeast China[J] . Scientia Agricultura Sinica, 2006, 39(6): 1287-1293.

    [9] 韩新辉, 佟小刚, 杨改河, 等. 黄土丘陵区不同退耕还林地土壤有机碳库差异分析[J] . 农业工程学报, 2012, 28(12): 223-229.
    [10] 王绍强, 周成虎, 李克让, 等. 中国土壤有机碳库及空间分布特征分析[J] . 地理学报, 2000, 55(5): 533-544.
    [10]

    SHI C T, WANG E H, CHEN X W. Organic carbon in soil aggregates and its dynamic changes of larch plantations in black soil region[J] . Journal of Soil and Water Conservation, 2010, 24(5): 208-212.

    [11]

    HU N, MA Z M, LAN J C, et al. Nitrogen fraction distributions and impacts on soil nitrogen mineralization in different vegetation restorations of karst rocky desertification[J] . Environmental Science, 2015, 36(9): 3411-3421.

    [11] 刘毅, 李世清, 邵明安, 等. 黄土高原不同土壤结构体有机碳库的分布[J] . 应用生态学报, 2006, 17(6): 1003-1008.
    [12]

    AN J, LU J, ZHENG F L, et al. Soil aggregate transport during soil erosion process under different soil surface conditions on black soil slope farmland[J] . Journal of Soil and Water Conservation, 2011, 25(6): 100-104.

    [12]

    PAUL K I, POLGLASE P J, NYAKUENGAMA J G, et al. Change in soil carbon following afforestation[J] . Forest Ecology and Management, 2000, 168(1): 241-257.

    [13] 黎宏祥, 王彬, 王玉杰,等. 不同林分类型对土壤团聚体稳定性及有机碳特征的影响[J] . 北京林业大学学报, 2016, 38(5): 84-91.
    [13]

    WANG Y, ZHANG J H, LI F C. Tillage erosion influence on soil water-stable aggregate and moisture properties on the hillslope[J] . Journal of Soil and Water Conservation, 2015, 29(1): 180-185.

    [14] 方华军, 杨学明, 张晓平, 等. 东北黑土区坡耕地表层土壤颗粒有机碳和团聚体结合碳的空间分布[J] . 生态学报, 2006, 26(9): 2847-2853.
    [14]

    FAN H Z, ZHANG J H, WANG Y, et al. Tillage erosion impacts on soil aggregate associated carbon in mountainous region slope farmland of northern Sichuan[J] . Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 157-164.

    [15]

    WANG Z L, SHAO M A, LI Y. Study on the soil redistribution induced by tillage erosion in loess region of China[J] . Plant Nutrition and Fertilizer Science, 2002, 8(2): 168-172.

    [15] 梁爱珍, 张晓平, 杨学明, 等. 耕作方式对耕层黑土有机碳库储量的短期影响[J] . 中国农业科学, 2006, 39(6): 1287-1293.
    [16]

    FANG H J, YANG X M, ZHANG X P, et al. Effects of soil erosion and deposition on loss and accumulation of soil organic carbon in physical fractions[J] . Acta Pedologica Sinica, 2007, 44(3): 467-474.

    [16] 史长婷, 王恩姮, 陈祥伟. 黑土区落叶松人工林土壤团聚体有机碳及动态变[J] . 水土保持学报, 2010, 24(5): 208-212.
    [17]

    WANG Y, YANG M Y, LIU P L. The wavelet analysis on the soil erosion intensity in the black soil straight cultivated slope[J] . Journal of Nuclear Agricultural Sciences, 2010, 24(1): 98-103.

    [17] 胡宁, 马志敏, 蓝家程, 等. 石漠化山地植被恢复过程土壤团聚体氮分布及与氮素矿化关系研究[J] . 环境科学, 2015, 36(9): 3411-3421.
    [18]

    AN S S, ZHANG X, ZHANG Y, et al. Distribution of organic carbon in different soil aggregates size during revegetation in hilly-gully region of Loess Plateau[J] . Journal of Soil and Water Conservation, 2007, 21(6): 109-113.

    [18]

    ELLISON W D. Studies of raindrop erosion[J] . Journal of Agricultural Engineering Research, 1944, 25: 131-136.

    [19] 安娟, 卢嘉, 郑粉莉, 等. 不同地表条件下黑土区坡耕地侵蚀过程中土壤团聚体迁移[J] . 水土保持学报, 2011, 25(6): 100-104.
    [20] 王勇, 张建辉, 李富程. 耕作侵蚀对坡耕地土壤水稳定性团聚体和水分特征的影响[J] . 水土保持学报, 2015, 29(1): 180-185.
    [21] 樊红柱, 张建辉, 王勇, 等. 川北山区坡耕地侵蚀耕作对土壤团聚体碳的影响[J] . 农业机械学报, 2015, 46(11): 157-164.
    [22]

    OOST K V, GOVERS G, DE ALBA S, et al. Tillage erosion: a review of controlling factors and implications for soil quality[J] . Progress in Physical Geography, 2006, 30(4): 443-466.

    [23]

    LOBB D A, GARY K R. Modelling tillage translocation using step, linear-plateau and exponential functions[J] . Soil Tillage Research, 1999, 51(3-4): 317-330.

    [24] 王占礼, 邵明安, 李勇. 黄土地区耕作侵蚀过程中的土壤再分布规律研究[J] . 植物营养与肥料学报, 2002, 8(2): 168-172.
    [25] 方华军,杨学明,张晓平, 等. 黑土坡耕地侵蚀和沉积对物理性组分有机碳积累与损耗的影响[J] . 土壤学报, 2007, 44(3): 467-474.
    [26] 王占礼, 邵明安, 雷廷武. 黄土区耕作侵蚀及其对总土壤侵蚀贡献的空间格局[J] . 生态学报, 2003, 23(7): 1328-1335. WANG Z L, SHAO M A, LEI T W. Spatial patterns of tillage erosion and its contribution to total erosion in loess region of China[J] . Acta Ecologica Sinica, 2003, 23(7): 1328-1335.
    [27] 王禹, 杨明义, 刘普灵. 典型黑土直型坡耕地土壤侵蚀强度的小波分析[J] . 核农学报, 2010, 24(1): 98-103.
    [28] 安韶山, 张玄, 张扬, 等. 黄土丘陵区植被恢复中不同粒级土壤团聚体有机碳分布特征[J] . 水土保持学报, 2007, 21(6): 109-113.
    [29]

    ELLIOTT E T. Aggregate structure and carbon, nitrogen, and phosphorus in native and cultivated soil[J] . Soil Science Society of America Journal, 1986, 50(3): 627-633.

    [30]

    GOLCHIN A, ODAS J M, SKJEMSTAD J O, et al. Structural and dynamic properties of soil organic matter as reflected by 13C natural abundance, pyrolysis mass spectrometry and solid-state 13C NMR spectroscopy in density fractions of an oxisol under forest and pasture[J] . Australian Journal of Soil Research, 1995, 33(1): 59-76.

    [31]

    TISDALL J M, OADES J M. Organic matter and water-stable aggregates in soil[J] . Journal of Soil Research, 1982, 33(2): 141-163.

    [32]

    CAMBADELLA C A, ELLIOTT E T. Carbon and nitrogen distribution in aggregates from cultivated and native grassland soils[J] . Soil Science Society of America Journal, 1993, 57(4): 1071-1076.

    [33]

    PUGET P, CHENU C, BALESDENT J. Total and young organic matter distribution in aggregates of silty cultivated soils[J] . European Journal of Soil Science, 2005, 46(3): 449-459.

  • 期刊类型引用(6)

    1. 林秀云,孙圆,刘晨曦,姚睿涵,周春国,曹林,曹福亮. 依据地面激光扫描数据的杉木材积建模与造材. 东北林业大学学报. 2022(01): 33-39 . 百度学术
    2. 李沛婷,赵庆展,田文忠,马永建. 结合无人机载LiDAR点云法向量的K-means++聚类精简. 国土资源遥感. 2020(02): 103-110 . 百度学术
    3. 程子阳,任国全,张银. 扫描线段特征用于三维点云地面分割. 光电工程. 2019(07): 111-120 . 百度学术
    4. 蔡越,徐文兵,梁丹,邓愫愫,李翀. 基于激光回波强度判别毛竹年龄. 中国激光. 2018(01): 272-280 . 百度学术
    5. 曾碧,黄文. 一种融合多特征聚类集成的室内点云分割方法. 计算机工程. 2018(03): 281-286 . 百度学术
    6. 田青华,白瑞林,李杜. 基于改进欧氏聚类的散乱工件点云分割. 激光与光电子学进展. 2017(12): 316-324 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  1638
  • HTML全文浏览量:  178
  • PDF下载量:  34
  • 被引次数: 13
出版历程
  • 收稿日期:  2016-02-29
  • 发布日期:  2016-12-30

目录

    /

    返回文章
    返回