高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NaCl对泌盐红树和非泌盐红树Cd吸收和积累的影响

向敏 孙会敏 王少杰 郎涛 马旭君 李妮亚 陈少良

向敏, 孙会敏, 王少杰, 郎涛, 马旭君, 李妮亚, 陈少良. NaCl对泌盐红树和非泌盐红树Cd吸收和积累的影响[J]. 北京林业大学学报, 2016, 38(8): 10-17. doi: 10.13332/j.1000-1522.20160079
引用本文: 向敏, 孙会敏, 王少杰, 郎涛, 马旭君, 李妮亚, 陈少良. NaCl对泌盐红树和非泌盐红树Cd吸收和积累的影响[J]. 北京林业大学学报, 2016, 38(8): 10-17. doi: 10.13332/j.1000-1522.20160079
XIANG Min, SUN Hui-min, WANG Shao-jie, LANG Tao, MA Xu-jun, LI Ni-ya, CHEN Shao-liang. Effects of NaCl on cadmium uptake, accumulate in secretor and non-secretor mangrove species.[J]. Journal of Beijing Forestry University, 2016, 38(8): 10-17. doi: 10.13332/j.1000-1522.20160079
Citation: XIANG Min, SUN Hui-min, WANG Shao-jie, LANG Tao, MA Xu-jun, LI Ni-ya, CHEN Shao-liang. Effects of NaCl on cadmium uptake, accumulate in secretor and non-secretor mangrove species.[J]. Journal of Beijing Forestry University, 2016, 38(8): 10-17. doi: 10.13332/j.1000-1522.20160079

NaCl对泌盐红树和非泌盐红树Cd吸收和积累的影响

doi: 10.13332/j.1000-1522.20160079
基金项目: 

国家自然科学基金项目(31270654、31160150、31570587)、教育部科学技术研究(科学技术类)项目(113013A)、人事部留学人员科技活动项目(2012001)、高等学校学科创新引智计划项目(111 Project、B13007)、教育部创新团队发展计划项目(IRT13047)。

详细信息
    作者简介:

    向敏。主要研究方向:红树逆境生理。Email:x8113462@163.com地址:571158海南海口龙昆南路99号海南师范大学生命科学学院。责任作者:李妮亚,研究员。主要研究方向:树木抗逆生理。Email:niyali6515@163.com地址:同上。

    向敏。主要研究方向:红树逆境生理。Email:x8113462@163.com地址:571158海南海口龙昆南路99号海南师范大学生命科学学院。责任作者:李妮亚,研究员。主要研究方向:树木抗逆生理。Email:niyali6515@163.com地址:同上。

Effects of NaCl on cadmium uptake, accumulate in secretor and non-secretor mangrove species.

  • 摘要: 为研究NaCl对红树植物Cd吸收和转运的影响,本文以非泌盐红树秋茄和泌盐红树桐花树幼苗为实验材料,研究了不同浓度NaCl和CdCl2处理下地上和地下各器官中Na+、Ca2+、Cd2+离子浓度的变化,并利用非损伤微测技术测定植物根尖在不同处理下对Cd2+和Ca2+的动态吸收。结果表明,随着CdCl2处理浓度的增加,2种红树的根、胚轴、茎和叶4器官中的Cd2+含量均明显增加。而泌盐红树桐花树各器官中Cd2+含量均高于非泌盐红树秋茄,分别达到65%(根)、19%(胚轴)、203%(茎)和96%(叶)。利用非损伤微测技术测定Cd2+流,发现Cd2+内流能被Ca2+通道抑制剂LaCl3抑制,表明Cd2+主要通过Ca2+通道实现内流。在NaCl对Cd2+吸收的影响方面,低浓度NaCl(100~200 mmol/L)能促进秋茄对Cd2+的积累,但高浓度NaCl(400 mmol/L)抑制了桐花树和秋茄对Cd2+的吸收。这是由于:1)红树根系对Na+吸收增加,而Na+能与Cd2+竞争膜上转运蛋白上的金属离子结合位点从而减少Cd2+的吸收,2)NaCl促进了植物根尖对Ca2+的吸收,从而竞争性的抑制了Cd2+通过Ca2+通道的内流,最终减少了2种红树根系对Cd2+的吸收和积累。泌盐红树桐花树Cd2+含量高于非泌盐红树秋茄,表明桐花树根细胞质膜上的转运蛋白与Ca2+通道对Cd2+的吸收能力高于秋茄。

     

  • [1] TOMLINSON P B. The botany of mangroves [M]. Cambridge: Cambridge University Press, 1994.
    [1] LIN P. Mangrove [M]. Beijing: China Ocean Press, 1984.
    [2] 林鹏.红树林[M].北京:海洋出版社,1984.
    [2] WANG P, ZHAO Z Z, MA R L, et al. Bioaccumulation characteristics of heavy metal in intertidal zone sediments from northern Hainan Island [J]. Ecology and Environmental Sciences, 2014, 23(5): 842-846.
    [3] WANG W Q, CHEN Q. Salt-tolerant plant resources form coastal areas of south China [M]. Xiamen: Xia Men University Press, 2013.
    [3] 王鹏,赵志忠,马荣林,等.海南岛北部潮间带红树林对重金属的累积特征[J].生态环境学报, 2014, 23(5): 842-846.
    [4] ZHANG F Q, WANG Y S, LOU Z P, et al. Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza) [J].Chemosphere, 2007, 67 (1): 44-50.
    [4] CHAI M W. Ecological responses of exotic species Spartina alterniflora and Flaveria bidentis to heavy metal and saline-alkali stresses [D].Tianjin: Nankai University, 2013.
    [5] LUO X. Subcellular distribution of salt ions and Cd in Amaranth under NaCl stress [D].Guangzhou: Jinan University, 2012.
    [5] CAREGNATO F F, KOLLER C E, MACFARLANE G R, et al. The glutathione antioxidant system as a biomarker suite for the assessment of heavy metal exposure and effect in the grey mangrove, Avicennia marina (Forsk.) Vierh [J]. Marine Pollution Bulletin, 2008, 56 (6): 1119-1127.
    [6] ZHOU L Z, LUO X, HE B Y, et al. Subcellular distribution and translocation of Cd in Amaranth under salinity stress [J]. Ecology and Environmental Sciences, 2015, 24(1): 139-145.
    [6] 王文卿,陈琼.南方滨海耐盐植物资源:1[M].厦门:厦门大学出版社, 2013.
    [7] BARAZANI O, DUDAI N, KHADKA U R, et al. Cadmium accumulation in Allium schoenoprasum L. grown in an aqueous medium[J]. Chemosphere, 2005, 57(9):1213-1218
    [7] WANG S J, ZHAO N, SHEN Z D, et al. Mediation of NO on Cd2+ uptake in Populus euphratica cells under cadmium stress[J]. Journal of Beijing Forestry University, 2015, 37(6): 11-16.
    [8] 柴民伟.外来种互花米草和黄顶菊对重金属和盐碱胁迫的生态响应[D].天津:南开大学, 2013.
    [8] ZHENG F Z, LIN P, ZHENG W J, et al. Study on absorption and removal of Kandelia candel for pollutant cadmium[J]. Acta Phytoecologica et Geobotanica Sinica, 1992, 16(3): 220-226.
    [9] 罗璇. NaCl 胁迫下苋菜盐分离子和 Cd 的亚细胞分布研究[D].广州:暨南大学, 2012.
    [10] 周丽珍,罗璇,何宝燕,等. NaCl胁迫下苋菜中镉的亚细胞分布及转运研究[J].生态环境学报, 2015, 24(1): 139-145.
    [11] GREGER M, KAUTSKY L, SANDBERG T. A tentative model of Cd uptake in Potamogeton pectinatus in relation to salinity [J]. Environmental and Experimental Botany, 1995, 35 (2): 215-225.
    [12] THOUVENIN B, GONALEZ J L, BOUTIER B. Modeling of pollutant behavior in estuaries: application to cadmiumin the Loire estuary [J]. Marine Chemistry, 1997, 58 (1-2):147-161.
    [13] WILLIAMS T P, BUBB J M, LESTER J N. Metal accumulation within salt marsh environments: a review[J]. Marine Pollution Bulletin, 1994, 28(5): 277-290.
    [14] SARI I, DIN Z B. Effects of salinity on the uptake of lead and cadmium by two mangrove species Rhizophora apiculata Bl. and Avicennia alba Bl[J]. Chemistry and Ecology, 2012, 28(4): 365-374.
    [15] CHEN S L, LI J, WANG T, et al. Osmotic stress and ion-specific effects on xylem bascisic acid and the relevance to salinity tolerance in poplar [J]. Journal of Plant Growth Regulation, 2002, 21(3):224-233.
    [16] CHEN S L, LI J K, WANG S S, et al. Salt nutrient uptake and transport and ABA of Populous euphratica: a hybrid in response to increasing soil NaCl [J].Trees, 2001, 15(3):186-194.
    [17] 王少杰,赵楠,申泽丹,等. 镉胁迫下NO对胡杨细胞Cd2+吸收调控机制的研究[J].北京林业大学学报, 2015, 37(6): 11-16.
    [18] 郑逢中,林鹏,郑文教,等. 红秋对镉的吸收、积累及净化作用的研究[J]. 植物生态学与地植物学学报, 1992, 16(3): 220-226.
    [19] PALIYAVUTH C, CLOUGH B, PATANAPONPAIBOON P. Salt uptake and shoot water relation in mangroves [J]. Aquatic Botany, 2004, 78: 349-360.
    [20] MACFARLANE G R, BURCHETT M T. Zinc distribution and excretion in the leaves of the grey mangrove, Avicennia marina (Forsk.) Vierh [J]. Environmental and Experimental Botany, 1999, 41(2):167-175.
    [21] ZURAYK R A, KHOURY N F, TALHOUK S N, et al. Salinity-heavy metal interactions in four salt-tolerant plant species [J]. Journal of Plant Nutrition, 2001, 24(11): 1773-1786.
    [22] GRIEVE C M, SUAREZ D L. Purslane (Portulaca oleracea L.): a halophytic crop for drainage water reuse systems [J]. Plant Soil, 1997, 192:277-283.
    [23] FRITIOFF A, KAUTSKY L, GREGER M. Influence of temperature and salinity on heavy metal uptake by submersed plants [J]. Environmental Pollution, 2005, 133(3): 265-274.
    [24] NORAHO N, GAUR J P. Effect of cations, including heavy metals, on cadmium uptake by Lemna polyrhiza L[J]. Biometals, 1995, 8(2): 95-98.
    [25] ANDERSON A, NILSSON K. Influence of lime and soil pH and Cd availability to plants [J]. Ambio, 1974, 3(5):198-200.
    [26] TESTER M. Plant ion channels: whole-cell and single-channel studies [J]. New Phytologist, 1990, 114(3): 305-340.
    [27] SUN J, WANG R G, ZHANG X, et al. Hydrogen sulfide alleviates cadmium toxicity through regulations of cadmium transport across the plasma and vacuolar membranes in Populus euphratica cells[J]. Plant Physiology and Biochemistry, 2013, 65(6):67-74.
    [28] SUN J, WANG M J, DING M Q, et al. H2O2 and cytosolic Ca2+ signals triggered by the PM H+-coupled transport system mediate K+/Na+ homeostasis in NaCl-stressed Populus euphratica cells [J]. Plant Cell and Environment, 2010, 33(6): 943-958.
  • 加载中
计量
  • 文章访问数:  1111
  • HTML全文浏览量:  178
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-14
  • 刊出日期:  2016-08-31

目录

    /

    返回文章
    返回