Correlations between leaf, stem and root functional traits of common tree species in an evergreen broad-leaved forest
-
摘要: 以有关植物各构件功能性状之间关系的3个主要假说(功能相似假说、结构相似假说和整体协调假说)为依据,研究植物3个构件根、茎、叶对应功能性状之间的关系,是目前植物功能性状研究领域的研究热点。本文以江西大岗山栲树天然阔叶林中常见的16个树种为研究对象,选择了植物比叶面积、比根长、各构件组织密度以及各构件碳、氮、磷含量等共15个功能性状指标。并将其分为结构性状和化学性状2大类,利用多重t检验和皮尔森相关检验对根、茎、叶3个构件对应功能性状的差异性和相关性进行了分析。结果表明:在结构性状方面,比叶面积和比根长之间相关性不显著;各构件组织密度差异显著,大小依次为叶>茎>根,茎和根的组织密度相关性比叶和茎、叶和根更强。在化学性状方面,各构件碳含量大小并无显著差异,且相关性极显著;氮含量从高到低依次为叶>小枝>细根,且叶和细根的氮含量相关性显著;磷含量从高到低依次为小枝>叶>细根,且3个构件之间磷含量都为正相关。从各构件结构性状的关系来看,研究结果支持结构相似假说;从各构件氮含量的关系来看,研究结果支持功能相似假说;从各构件碳含量和磷含量的关系来看,研究结果支持整体协调假说。整体来看,植物各个构件的功能性状之间耦合协调,反映了植物适应环境的生态策略。Abstract: In this paper we try to explain the relationships between the functional traits of different plant organs based on three hypotheses, i.e., the structural similarity hypothesis, functional similarity hypothesis and above and below-ground coordination hypothesis. We selected sixteen main tree species in the evergreen broad-leaved forest in Dagangshan, Jiangxi Province. Fifteen functional traits of these species were measured, including specific leaf area, specific root length, tissue density, carbon content etc., which could be classified into structural trait and chemical trait categories. Multiple t test and Pearson correlation test were used to analyze the correlations between functional traits of root, stem and leaf. For structural traits, there was no significant correlations between specific leaf area and specific root length. Tissue density differed significantly among the three organs and the correlation between stem and root tissue density was stronger than that between other organs. For chemical traits, the carbon contents showed little difference among the three organs and their pairwise correlations were extremely strong. The nitrogen content was higher in leaf, medium in twig and lower in fine root, and the correlations between leaf and root nitrogen contents were significant. Besides, twig phosphorous content was the highest, and the phosphorus contents of the three organs were positively related. Our results on the relationships of structural traits support the structural similarity hypothesis while the relationships of the nitrogen content support the functional similarity hypothesis. Meanwhile, the above and below-ground coordination hypothesis is supported by our results on carbon and phosphorous content. In conclusion, the functional traits of leaf, stem and root are coupled and may reflect the ecological strategies of plants to adapt to the environment.
-
Keywords:
- structural traits /
- chemical traits /
- functions of leaf /
- stem and root
-
-
[1] HE J S, HAN X G. Ecological stoichiometry: searching for unifying principles from individuals to ecosystems [J]. Journal of Plant Ecology, 2010, 34(1): 2-6.
[1] KOZLOWSKI T T, PALLARDY S G. Physiology of woody plants[M]. San Diego: Academic Press, 1997.
[2] JACKSON R B, POCKMAN W T, HOFFMANN W A, et al. Structure and function of root systems[C]//PUGNAIRE F I, VALLADARES F. Plant functional ecology. Boca Raton: CRC Press, 2007.
[2] LIU X J, MA K P. Plant functional traits-concepts,applicationsand future directions [J]. Science China Life Sciences, 2015, 45(4): 325-339.
[3] WANG B, LI H J, GUO Q S,et al. Research for forest biodiversity in Dagangshan Mountains of Jiangxi Province [M]. Beijing: China Forestry Publishing House, 2005.
[3] ACKERLY D D, DUDLEY S A, SULTAN S E, et al. The evolution of plant ecophysiological traits: recent advances and future directions [J]. BioScience, 2000, 50(11): 979-995.
[4] WESTOBY M, FALSTER D S, MOLES A T, et al. Plant ecological strategies: some leading dimensions ofvariation between species[J].Annual Review of Ecology andSystematics, 2002, 33(1): 125-159.
[4] WANG Y, LIU Y Q, YANG Q P, et al. A study on the community characteristics of evergreen broad-leaved forest in Dagangshan Mountains of Jiangxi Province [J].Acta Agriculturae Universitatis Jiangxiensis, 2009, 31(6): 1055-1063.
[5] SHI Y, WEN Z M, GONG S H. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River basin, Shaanxi Province, China [J]. Acta Ecologica Sinica, 2011, 31(22): 6805-6814.
[5] WRIGHT I J, REICH P B, WESTOB Y M, et al. The world-wide leaf economics spectrum [J].Nature, 2004, 428: 821-827.
[6] ZHOU P, GENG Y, MA W H, et al. Linkages of functional traits among plant organs in the dominant species of the Inner Mongolia grassland, China [J]. Journal of Plant Ecology, 2010, 34(1): 7-16.
[6] HACKE U G, SPERRY J S, POCKMAN W T, et al. Trends inwood density and structure are linked to prevent of xylemimplosion by negative pressure [J]. Oecologia, 2001, 126(4): 457-461.
[7] CAI F, ZOU B, ZHENG J M, et al. Fine root morphology and carbon and nitrogen contents of 11 tree species in subtropical evergreen forest [J]. Journal of Northwest A&F University (Nat. Sci. ED.), 2014, 42(5): 45-54.
[7] STERCK F J, VAN GELDER H A, POORTER L. Mechanicalbranch constraints contribute to life-history variation acrosstree species in a Bolivian forest [J]. Journal of Ecology, 2006, 94(6): 1192-1200.
[8] KING D A, DAVIES S J, NURSUPARDI M N, et al. Treegrowth is related to light interception and wood density in two mixed dipterocarp forests of Malaysia [J].Functional Ecology, 2005, 19(3): 445-453.
[8] ZOU B, CAI F, ZHENG J M, et al. Biomassvertical distribution of fine root and its traits of four tree species in subtropical natural forest [J]. Journal of Northeast Forestry University, 2015, 43(3): 18-22.
[9] ZHOU Z Q, PENG Y L, SUN M L,et al. Effects of nitrogen levels on photosynthetic and fluorescence characteristics in seedlings of endangered plant Phellodendron amurense [J]. Journal of Beijing Forestry University, 2015, 37(12): 17-23.
[9] KING D A, DAVIES S J, NURSUPARDI M N, et al. The role ofwoody density and stem support costs in the growth andmortality of tropical trees [J]. Journal of Ecology, 2006, 94(3): 670-680.
[10] GUO W, GONG H, HAN S J, et al. Effects of nitrogen-water interaction on fine root morphology and production in a mixed Pinus koraiensis forest in Changbai Mountains, northeastern China[J]. Journal of Beijing Forestry University, 2016, 38(4): 29-35.
[10] WITHINGTON J M, REICH P B, OLEKSYN J, et al. Comparison of structure and life span in roots and leavesamong temperate trees [J]. Ecological Monographs, 2006, 76(3):381-397.
[11] REICH P B, OLEKSYN J. Global patterns of plant leaf N and P in relation to temperature and latitude [J]. Proc Natl Acad Sci USA, 2004, 101(30): 11001-11006.
[11] XU B, CHENG Y X, GAN H J, et al. Correlations between leaf and fine root traits among and within species of typical temperate grassland in Xilin River Basin, Inner Mongolia, China [J]. Journal of Plant Ecology, 2010, 34(1): 29-38.
[12] FENG Q H, SHI Z M, DONG L L, et al. Relationships among functional traits of Quercus species and their response to meteorological factors in the temperate zone of the North-South Transect of Eastern China [J]. Journal of Plant Ecology, 2010, 34(6): 619-627.
[12] 贺金生, 韩兴国. 生态化学计量学: 探索从个体到生态系统的统一化理论 [J]. 植物生态学报, 2010, 34(1): 2-6. [13] SHIPLEY B, VILE D, GARNIER E. From plant traits to plant communities:a statistical mechanistic approach to biodiversity [J]. Science, 2006, 314: 812-814.
[14] OSNAS J L D, LICHSTEIN J W, REICH P B, et al. Global leaftrait relationships: mass, area, and the leaf economics spectrum [J]. Science, 2013, 340:741-744.
[15] CHAVE J, COOMES D, JANSEN S, et al. Towards a worldwide wood economics spectrum [J]. Ecology Letters, 2009,12(4): 351-366.
[16] FRESCHET G, AERT R, CORNELISSEN H C. A plant economics spectrum of litter decomposability [J]. Functional Ecology, 2013, 26(1): 56-65.
[17] MOMMER L, WEEMSTRA M. The role of roots in the resource economics spectrum [J].New Phytologist, 2012, 195(4): 725-727.
[18] REICH P B. The world-wide “fast-slow” plant economics spectrum: a trait manifesto [J]. Journal of Ecology, 2014, 102(2): 275-301.
[19] CHAPIN F S. The mineral nutrition of wild plants [J]. Annual Review of Ecology and Systematics, 1980, 11(6): 233-260.
[20] TYREE M T, EWERS F W. The hydraulic architecture of trees andother woody plants [J].New Phytologist, 1991, 119(34): 345-360.
[21] PRATTRB A L, EWERS F W, et al. Relationshipsamong xylem transport, biomechanics and storage in stems and roots of nine Rhamnaceae species of the California chaparral [J]. New Phytologist,2007, 174(4): 787-798.
[22] 刘晓娟, 马克平. 植物功能性状研究进展 [J]. 中国科学(生命科学), 2015, 45(4): 325-339. [23] FORTUNEL C, PAUL VA F, BARALOTO C. Leaf, stem and root tissue strategies across 758 Neotropical tree species [J].Functional Ecology, 2012, 269(5):1153-1161.
[24] 王兵, 李海静, 郭泉水, 等. 江西大岗山森林生物多样性研究 [M]. 北京:中国林业出版社, 2005. [25] 王燕, 刘苑秋, 杨清培, 等. 江西大岗山常绿阔叶林群落特征研究 [J]. 江西农业大学学报, 2009, 31(6): 1055-1063. [26] PEREZ-HARGUINDEGUY N, DIAZ S, GAMIER E, et al. New handbook for standardized measurement of plant functional traits worldwide [J].Australian Journal of Botany, 2013, 61(3): 167-234.
[27] R Core Team. R: a language and environment for statistical computing[CP/OL]. R Foundation for Statistical Computing, Vienna, Austria. (2015-08-14)[2016-03-17]. http:∥www.R_project.org/.
[28] CRAINE J M, FROEHLE J, TILMAN D G. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients [J].Oikos, 2001, 93(2): 274-285.
[29] ZHENG J M, MARTINEZ-CABRERA H I. Wood anatomical correlates with the theoretical conductivity and wood density across China: evolutionary evidence of the functional differentiation of axial and radial parenchyma [J]. Annals of Botany, 2013, 112(5): 927-935.
[30] 施宇, 温仲明, 龚时慧. 黄土丘陵区植物叶片与细根功能性状关系及其变化 [J]. 生态学报, 2011, 31(22): 6805-6814. [31] TJOELKER M G, CRAIN J M, WEDIN D, et al. Linking leaf and root trait syndromes among 39 grassland and savannah species [J]. New Phytologist, 2005,167(2): 493-508.
[32] 周鹏, 耿燕, 马文红, 等. 温带草地主要优势植物不同器官间功能性状的关联 [J]. 植物生态学报, 2010, 34(1): 7-16. [33] BARALOTO C, PAINE C E T, POORTER L, et al. Decoupled leaf and stem economics in rain forest trees [J]. Ecology Letters, 2010, 13(11): 1338-1347.
[34] 蔡飞, 邹斌, 郑景明, 等. 亚热带常绿阔叶林11个树种的细根形态及碳氮含量研究 [J]. 西北农林科技大学学报(自然科学版), 2014, 42(5): 45-54. [35] 邹斌, 蔡飞, 郑景明, 等. 亚热带天然林4种树木细根生物量垂直分布和其他功能性状 [J]. 东北林业大学学报, 2015, 43(3): 18-22. [36] COMAS L H, EISSENSTAT D M. Linking fine root traits tomaximum potential growth rate among 11 mature temperate tree species [J]. Functional Ecology, 2004, 18(3): 388-397.
[37] AEKERLY D D, DONOGHUE M J. Leaf size, sapling allometry, and Corner's rules: phylogeny and correlated evolution in maples ( Acer ) [J]. American Naturalist, 1998, 152(6): 767-791.
[38] 周志强, 彭英丽, 孙铭隆, 等. 不同氮素水平对濒危植物黄檗幼苗光合荧光特性的影响[J]. 北京林业大学学报, 2015, 37(12): 17-23. [39] 郭伟, 宫浩, 韩士杰, 等. 氮、水交互对长白山阔叶红松林细根形态及生产量的影响[J]. 北京林业大学学报, 2016, 38(4): 29-35. [40] 徐冰, 程雨曦, 甘慧洁, 等. 内蒙古锡林河流域典型草原植物叶片与细根性状在种间及种内水平上的关联 [J]. 植物生态学报, 2010, 34(1): 29-38. [41] KERKHOOF A J, FAGAN W F, ELSER J J, et al. Phylogenetic and growth formvariation in the scaling of nitrogen and phosphorus in the seed plants [J]. The American Naturalist, 2006, 168(4): 103-122.
[42] 冯秋红, 史作民, 董莉莉, 等. 南北样带温带区栎属树种功能性状间的关系及其对气象因子的响应[J]. 植物生态学报, 2010, 34(6):619-627. -
期刊类型引用(11)
1. 秦孝天,郭梦鸽,秦少华,陈瑞丹. 梅花新品种‘治章骨红重翠’跨品种群特性机制探究. 生物工程学报. 2024(01): 239-251 . 百度学术
2. 周成宇,武怀燕,圣倩倩,曹福亮,祝遵凌. 33个观赏文冠果品系花瓣色彩的动态变化特征分析. 西部林业科学. 2023(05): 84-94 . 百度学术
3. 苏江硕,贾棣文,王思悦,张飞,蒋甲福,陈素梅,房伟民,陈发棣. 中国菊花遗传育种60年回顾与展望. 园艺学报. 2022(10): 2143-2162 . 百度学术
4. 付瀚森,张亚雯,赵阳阳,罗婷婷,邓慧杰,孟晨伟,王彩云. 菊花‘绿叮当’与毛华菊杂交后代花部性状杂种优势与混合遗传分析. 园艺学报. 2021(01): 96-106 . 百度学术
5. 周琦,赵峰,张慧会,祝遵凌. 香水莲花色素成分及含量的初步研究. 黑龙江农业科学. 2021(04): 72-78 . 百度学术
6. 侯瑞丽,武倩,闫星蓉,张芸香,郭晋平. 观赏型文冠果新品种花期颜色特征及其表型稳定性研究. 西北农业学报. 2021(01): 143-151 . 百度学术
7. 吴芳芳,原鑫,苏少文,贺丹,刘艺平,孔德政. 荷花品种的花器官表型性状及花色多样性分析. 河南农业大学学报. 2020(01): 24-29+37 . 百度学术
8. 赵晋陵,金玉,叶回春,黄文江,董莹莹,范玲玲,马慧琴,江静. 基于无人机多光谱影像的槟榔黄化病遥感监测. 农业工程学报. 2020(08): 54-61 . 百度学术
9. 丁苏芹,孙忆,李玺,唐东芹,史益敏. 小苍兰品种花色表型数量分类研究. 北方园艺. 2019(04): 85-91 . 百度学术
10. 袁培森,任守纲,翟肇裕,徐焕良. 基于半监督主动学习的菊花表型分类研究. 农业机械学报. 2018(09): 27-34 . 百度学术
11. 刘海英,高远,邢晨涛,甄俊琦,陆顺丽,王玉芝. 花青素苷提取专用菊种质及适宜采收期的筛选. 河南农业科学. 2018(09): 120-125 . 百度学术
其他类型引用(14)
计量
- 文章访问数: 2437
- HTML全文浏览量: 351
- PDF下载量: 64
- 被引次数: 25