高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

过筛处理对小兴安岭2种森林类型土壤有机碳矿化的影响

高菲 林维 崔晓阳

高菲, 林维, 崔晓阳. 过筛处理对小兴安岭2种森林类型土壤有机碳矿化的影响[J]. 北京林业大学学报, 2017, 39(2): 30-39. doi: 10.13332/j.1000-1522.20160100
引用本文: 高菲, 林维, 崔晓阳. 过筛处理对小兴安岭2种森林类型土壤有机碳矿化的影响[J]. 北京林业大学学报, 2017, 39(2): 30-39. doi: 10.13332/j.1000-1522.20160100
GAO Fei, LIN Wei, CUI Xiao-yang. Effects of sieving process on soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, Northeast China[J]. Journal of Beijing Forestry University, 2017, 39(2): 30-39. doi: 10.13332/j.1000-1522.20160100
Citation: GAO Fei, LIN Wei, CUI Xiao-yang. Effects of sieving process on soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, Northeast China[J]. Journal of Beijing Forestry University, 2017, 39(2): 30-39. doi: 10.13332/j.1000-1522.20160100

过筛处理对小兴安岭2种森林类型土壤有机碳矿化的影响

doi: 10.13332/j.1000-1522.20160100
基金项目: 

中央高校基本科研业务费专项 2572016AA06

“十二五”国家科技支撑计划项目 2011BAD37B01

“973”国家重点基础研究发展计划项目 2011CB403202

详细信息
    作者简介:

    高菲,博士生。主要研究方向:森林土壤有机碳。Email:1021268926@qq.com   地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

    责任作者:

    崔晓阳,教授,博士生导师。主要研究方向:森林土壤。Email:C_xiaoyang@126.com   地址:同上

  • 中图分类号: S714.2

Effects of sieving process on soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, Northeast China

  • 摘要: 采用室内培养法研究了过筛处理对小兴安岭阔叶次生林和原始红松林土壤有机碳(SOC)矿化的影响,测定了土壤有机碳矿化速率和累积矿化量(Cm),以及培养前后土壤冷水提取碳水化合物(CWEC)和热水提取碳水化合物(HWEC),利用一级动力学模型拟合土壤有机碳矿化参数:潜在可矿化碳(C0)、易矿化有机碳(C1)等,并分析了土壤Cm与冷水提取碳水化合物和热水提取碳水化合物的关系。结果表明:阔叶次生林土壤有机碳矿化速率和Cm均大于原始红松林。过筛处理使2种森林类型土壤有机碳矿化速率和累积矿化量增加,其中1 mm过筛土壤有机碳矿化增加量大于2 mm过筛土。过筛处理对2种森林类型土壤有机碳矿化速率的影响随着培养时间延长而减小。过筛处理对土壤C0无影响,却使土壤C1增加,其中2 mm过筛土C1增加49.09%~68.06%,1 mm过筛土C1增加91.03%~133.83%。过筛处理使土壤CWEC增加,但对HWEC无影响。土壤Cm与CWEC和HWEC的初始含量及变化量均呈极显著正相关,表明水提取碳水化合物是土壤有机碳矿化的关键组成部分,碳水化合物的损耗可以在很大程度上解释土壤矿化释放的CO2。综上,过筛处理破坏土壤结构,释放出部分胶结团聚体的碳水化合物,增加土壤有机碳矿化。

     

  • 图  1  过筛处理下2种森林类型土壤有机碳矿化速率

    A.阔叶次生林0 ~ 5 cm土层; B.阔叶次生林5 ~ 10 cm土层; C.原始红松林0 ~ 5 cm土层; D.原始红松林5 ~ 10 cm土层。

    Figure  1.  Mineralization rates of SOC in two forest types under different sample sieving methods

    A, 0-5 cm soil depth for broadleaved secondary forest; B, 5-10 cm soil depth for broadleaved secondary forest; C, 0-5 cm soil depth for virgin Korean pine forest; D. 5-10 cm soil depth for virgin Korean pine forest.

    图  2  不同过筛处理下2种森林类型土壤有机碳累积矿化量

    A.阔叶次生林; B.原始红松林。不同小写字母表示相同土层不同过筛处理间差异显著, 不同大写字母表示相同处理不同土层间差异显著(P<0.05)。下同。

    Figure  2.  Cumulative SOC mineralization amount in two forest types under different sample sieving methods

    A, broadleaved secondary forest; B. virgin Korean pine forest. Different lower-case letters indicate significant differences (P<0.05) among different sieving methods at the same soil layer, different upper-case letters indicate significant differences (P<0.05) among different soil layers with the same sieving method. The same below.

    图  3  样品处理方法对土壤冷水提取碳水化合物的影响

    A.阔叶次生林培养前; B.阔叶次生林培养后; C.原始红松林培养前; D.原始红松林培养后。

    Figure  3.  Effects of sample processing methods on soil extractable carbohydrate by cool water

    A, broadleaved secondary forest before incubation; B, broadleaved secondary forest after incubation; C, virgin Korean pine forest before incubation; D, virgin Korean pine forest after incubation.

    图  4  过筛处理对土壤热水提取碳水化合物的影响

    A.阔叶次生林培养前; B.阔叶次生林培养后; C.原始红松林培养前; D.原始红松林培养后。

    Figure  4.  Effects of sieving methods on soil extractable carbohydrate by hot water

    A, broadleaved secondary forest before incubation; B, broadleaved secondary forest after incubation; C, virgin Korean pine forest before incubation; D, virgin Korean pine forest after incubation.

    表  1  土壤基本性质

    Table  1.   Basic properties of sampled soil

    森林类型
    Forest type
    土层Soil
    depth/cm
    含水量
    Soil moisture/%
    pH 土壤有机碳
    Soil organic carbon (SOC)/(g·kg-1)
    土壤全氮
    Soil total nitrogen/(g·kg-1)
    C/N
    阔叶次生林
    Broadleaved secondary forest
    0~5 50.55 5.71 142.49 9.21 15.47
    5~10 39.33 5.82 47.44 3.84 12.35
    原始红松林
    Virgin Korean pine forest
    0~5 47.00 5.45 117.49 5.99 19.62
    5~10 34.67 5.68 37.56 2.33 16.09
    下载: 导出CSV

    表  2  2种森林类型土壤有机碳矿化参数

    Table  2.   Estimated parameters according to the first order knitics model for soil C mineralization

    森林类型
    Forest type
    土层深度
    Soil depth/cm
    处理方式
    Processing methods
    潜在可矿化碳
    C0/(mg·kg-1)
    易矿化碳含量
    Easily mineralizable C (C1)/(mg·kg-1)
    矿化速率常数
    Constant of mineralization rate K/d-1
    C0/SOC/
    %
    R2
    阔叶次生林
    Broadleaved secondaryforest
    0~5 对照Control 3 405.81±200.23a 62.62±11.38a 0.026 9a 3.39 0.999 9
    2 mm筛2 mm Sieve 3 885.66±99.23a 93.36±15.33b 0.028 2a 2.86 0.999 9
    1 mm筛1 mm Sieve 4 040.65±211.80a 145.53±9.81c 0.032 1a 2.85 0.999 6
    5~10 对照Control 1 167.04±139.39a 16.97±5.00a 0.021 5a 3.24 0.999 9
    2 mm筛2 mm Sieve 1 266.58±98.53a 27.08±7.06b 0.023 9a 2.64 0.999 7
    1 mm筛1 mm Sieve 1 305.20±151.45a 35.54±8.18c 0.027 5a 2.35 0.999 4
    原始红松林Virgin
    Korean pine forest
    0~5 对照Control 2 646.98±181.30a 47.94±7.70a 0.021 9a 2.10 0.999 7
    2 mm筛2 mm Sieve 2 694.56±100.25a 80.57±9.99b 0.026 5a 2.08 0.999 1
    1 mm筛1 mm Sieve 2 951.80±99.69a 112.10±15.58c 0.029 8a 1.92 0.998 6
    5~10 对照Control 968.24±20.25a 16.50±3.21a 0.022 0a 2.59 0.999 9
    2 mm筛2 mm Sieve 944.03±31.52a 25.70±4.03b 0.028 6a 2.09 0.999 5
    1 mm筛1 mm Sieve 953.64±29.63a 31.52±6.13c 0.031 7a 1.54 0.999 5
    注:不同小写字母表示相同土层不同过筛处理间差异显著(p<0.05)。Note: different lowercase letters indicate significant differences (P<0.05) among different sieving methods at the same soil layer.
    下载: 导出CSV

    表  3  土壤有机碳累积矿化量与水浸提碳水化合物的Pearson相关系数

    Table  3.   Pearson correlation coefficients between SOC cumulative mineralization amount and water extractable carbohydrate

    冷水提取碳水化合物
    Cool water extractable carbohydrate(CWEC)
    热水提取碳水化合物
    Hot water extractable carbohydrate(HWEC)
    初始含量
    Initial content
    结束含量
    Final content
    变化量
    Change of content
    初始含量
    Initial content
    结束含量
    Final content
    变化量
    Change of content
    对照CK 0.883** 0.300 0.775** 0.938** 0.906** 0.889**
    2 mm过筛土Soil sieved to 2 mm 0.906** 0.837 0.624** 0.954** 0.933** 0.889*
    1 mm过筛土Soil sieved to 1 mm 0.877** 0.490 0.854** 0.922** 0.860** 0.894**
    注Notes:*P<0.05, **P<0.01.
    下载: 导出CSV
  • [1] ALEXANDER M. Introduction to soil microbiology[J]. Soil Science, 1961, 125(5): 447. http://d.old.wanfangdata.com.cn/OAPaper/oai_pubmedcentral.nih.gov_91351
    [2] REY A, PETSIKOS C, JARVIS P G, et al. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions[J]. European Journal of Soil Science, 2005, 56(5): 589-599. doi: 10.1111/j.1365-2389.2004.00699.x
    [3] CHOW A T, TANJI K K, GAO S, et al. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils[J]. Soil Biology & Biochemistry, 2006, 38(3): 477-488. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=982238d16819eba5d8305984998df79e
    [4] CÔTEÁ L, BROWN S, PARÉ D, et al. Dynamics of carbon and nitrogen mineralization in relation to stand type, stand age and soil texture in the boreal mixed wood[J]. Soil Biology and Biochemistry, 2000, 32(8): 1079-1090. https://www.sciencedirect.com/science/article/abs/pii/S0038071700000171
    [5] GIARDINA C P, RYAN M G, HUBBARD R M, et al. Tree species and soil textural controls on carbon and nitrogen mineralization rates[J]. Soil Science Society of America Journal, 2001, 65(4): 1272-1279. doi: 10.2136/sssaj2001.6541272x
    [6] REY A, PEGORARO E, JARVIS P G. Carbon mineralization rates at different soil depths across a network of European forest sites (FORCAST)[J]. European Journal of Soil Science, 2008, 59(6): 1049-1062. doi: 10.1111/j.1365-2389.2008.01065.x
    [7] HATTEN J A, ZABOWSKI D. Changes in soil organic matter pools and carbon mineralization as influenced by fire severity[J]. Soil Science Society America of Journal, 2009, 73(1): 262-273. doi: 10.2136/sssaj2007.0304
    [8] GRAVE R A, NICOLOSO R D S, CASSOL P C, et al. Short-term carbon dioxide emission under contrasting soil disturbance levels and organic amendments[J]. Soil and Tillage Research, 2015, 146: 184-192. doi: 10.1016/j.still.2014.10.010
    [9] 邵月红, 潘剑君, 许信旺, 等.长白山森林土壤有机碳库大小及周转研究[J].水土保持学报, 2006, 20(6):99-102. doi: 10.3321/j.issn:1009-2242.2006.06.024

    SHAO Y H, PAN J J, XU X W, et al. Determination of forest soil organic carbon pool sizes and turnover rates in Changbaishan[J]. Journal of Soil and Water Conservation, 2006, 20(6): 99-102. doi: 10.3321/j.issn:1009-2242.2006.06.024
    [10] 陈锦盈, 孙波, 李忠佩, 等.不同土地利用类型土壤有机碳各库大小及分解动态[J].水土保持学报, 2008, 22 (1): 91-95. doi: 10.3321/j.issn:1009-2242.2008.01.020

    CHEN J Y, SUN B, LI Z P, et al. Pool size of soil organic carbon and dynamics under different land use[J]. Journal of Soil and Water Conservation, 2008, 22(1): 91-95. doi: 10.3321/j.issn:1009-2242.2008.01.020
    [11] 高菲, 姜航, 崔晓阳.小兴安岭两种森林类型土壤有机碳库及周转[J].应用生态学报, 2015, 26(7): 1913-1920. http://d.old.wanfangdata.com.cn/Periodical/yystxb201507001

    GAO F, JIANG H, CUI X Y. Soil organic carbon pools and their turnover under two different types of forest in the Xiao Xing'an Mountains[J]. Chinese Journal of Applied Ecology, 2015, 26(7): 1913-1920. http://d.old.wanfangdata.com.cn/Periodical/yystxb201507001
    [12] SONG Y, SONG C, TAO B, et al. Short-term responses of soil enzyme activities and carbon mineralization to added nitrogen and litter in a freshwater marsh of Northeast China[J]. European Journal of Soil Biology, 2014, 61(5): 72-79. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=277f31b9d9cdb626f4438f25f596db9a
    [13] FISK M, SANTANGELO S, MINICK K. Carbon mineralization is promoted by phosphorus and reduced by nitrogen addition in the organic horizon of northern hardwood forests[J]. Soil Biology & Biochemistry, 2015, 81: 212-218. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9a792c656cd468936dd11be4c895a60f
    [14] WHITMAN T, ENDERS A, LEHMANN J. Pyrogenic carbon additions to soil counteract positive priming of soil carbon mineralization by plants[J]. Soil Biology & Biochemistry, 2014, 73: 33-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=77b78db49f9c9909a9fafcf28e74f3de
    [15] DENEF K, SIX J, BOSSUYT H, et al. Influence of dry-wet cycles on the interrelationship between aggregate, particulate organic matter, and microbial community dynamics[J]. Soil Biology & Biochemistry, 2001, 33(12): 1599-1611.
    [16] PULLEMAN M M, MARINISSEN J C Y. Physical protection of mineralizable C in aggregates from long-term pasture and arable soil[J]. Geoderma, 2004, 120(3-4): 273-282. doi: 10.1016/j.geoderma.2003.09.009
    [17] HASSINK J, BOUWMAN L A, ZWART K B, et al. Relationships between soil texture, physical protection of organic matter, soil biota, and C and N mineralization in grassland soils[J]. Geoderma, 1993, 57(1-2): 105-128. doi: 10.1016/0016-7061(93)90150-J
    [18] CURTIN D, BEARE M H, SCOTT C L, et al. Mineralization of soil carbon and nitrogen following physical disturbance: a laboratory assessment[J]. Soil Science Society of America Journal, 2014, 78(3): 925-935. doi: 10.2136/sssaj2013.12.0510
    [19] STENGER R, BARKLE G F, BURGESS C P. Mineralisation of organic matter in intact versus sieved/refilled soil cores[J]. Soil Research, 2002, 40(1): 149-160. doi: 10.1071/SR01003
    [20] OORTS K, NICOLARDOT B, MERCKX R, et al. C and N mineralization of undisrupted and disrupted soil from different structural zones of conventional tillage and no-tillage systems in northern France[J]. Soil Biology & Biochemistry, 2006, 38(9): 2576-2586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=1662eda6112fffde1f818192add4b236
    [21] 陆志敏, 潘根兴, 郑聚锋, 等.不同状态样品培养下太湖地区黄泥土好气呼吸与CO2产生潜力[J].生态环境, 2007, 16(3): 987-993. doi: 10.3969/j.issn.1674-5906.2007.03.056

    LU Z M, PAN G X, ZHENG J F, et al. Change in CO2 production potential by soil respiration from a paddy soil under aerobic incubation by using differently disturbed samples[J]. Ecology and Environment, 2007, 16(3): 987-993. doi: 10.3969/j.issn.1674-5906.2007.03.056
    [22] 张焕军, 郁红艳, 丁维新.土壤碳水化合物的转化与累积研究进展[J].土壤学报, 2013, 50 (6): 1200-1206. http://d.old.wanfangdata.com.cn/Periodical/trxb201306016

    ZHANG H J, YU H Y, DING W X. Progress in the study on transformation and accumulation of carbohydrates in soil[J]. Acta Pedologica Sinica, 2013, 50(6): 1200-1206. http://d.old.wanfangdata.com.cn/Periodical/trxb201306016
    [23] YOUSEFI M, HAJABBASI M, SHARIATMADARI H. Cropping system effects on carbohydrate content and water-stable aggregates in a calcareous soil of Central Iran[J]. Soil & Tillage Research, 2008, 101(1): 57-61. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bc4f71da9a2126cf1cfbc2b4470700de
    [24] SIX J, ELLIOTT E T, PAUSTIAN K. Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture[J]. Soil Biology & Biochemistry, 2000, 32(14): 2099-2103. https://www.sciencedirect.com/science/article/abs/pii/S0038071700001796
    [25] 张威, 解宏图, 何红波, 等.土壤碳水化合物的测定方法及其指示作用[J].应用生态学报, 2006, 17(8): 1535-1538. doi: 10.3321/j.issn:1001-9332.2006.08.035

    ZHANG W, XIE H T, HE H B, et al. Soil carbohydrates: their determination methods and indication functions[J]. Chinese Journal of Applied Ecology, 2006, 17(8): 1535-1538. doi: 10.3321/j.issn:1001-9332.2006.08.035
    [26] LEHMANN J, KLEBER M. The contentious nature of soil organic matter[J]. Nature, 2015, 528: 60-68. doi: 10.1038/nature16069
    [27] 王薪琪, 高菲, 崔晓阳.凉水自然保护区森林演替序列土壤水溶性碳水化合物质量分数特征[J].东北林业大学学报, 2014, 42(11): 107-110. doi: 10.3969/j.issn.1000-5382.2014.11.024

    WANG X Q, GAO F, CUI X Y. Soil carbohydrates in coniferous and broad-leaved forest in Liangshui Nature Reserve[J]. Journal of Northeast Forestry University, 2014, 42(11): 107-110. doi: 10.3969/j.issn.1000-5382.2014.11.024
    [28] RIFFALDI R, SAVIOZZI A, LEVI-MINZI R. Carbon mineralization kinetics as influenced by soil properties[J]. Biology & Fertility of Soils, 1996, 22(4): 293-298. doi: 10.1007/BF00334572
    [29] JIANG P K, XU Q F. Abundance and dynamics of soil labile carbon pools under different types of forest vegetation[J]. Pedosphere, 2006, 16(4): 505-511. doi: 10.1016/S1002-0160(06)60081-7
    [30] LANDGRAF D, LEINWEBER P, MAKESCHIN F. Cold and hot water-extractable organic matter as indicators of litter decomposition in forest soils[J]. Journal of Plant Nutrition & Soil Science, 2006, 169(1): 76-82. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=e0a41d89e89d09c4e2f4cd65d1e31c0d
    [31] GRANDY A S, ERICH M S, PORTER G A. Suitability of the anthrone-sulfuric acid reagent for determining water soluble carbohydrates in soil water extracts[J]. Soil Biology & Biochemistry, 2000, 32(5): 725-727. https://www.sciencedirect.com/science/article/abs/pii/S0038071799002035
    [32] TOWNSEND A R, VOTOUSEK P M, TRUMBORE S E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii[J]. Ecology, 1995, 76(3): 721-733. doi: 10.2307/1939339
    [33] PARTON W J, SCHIMEL D S, COLE C Ⅴ, et al. Analysis of factors controlling soil organic matter levels in Great Plains grasslands[J]. Soil Science Society of America Journal, 1987, 51(5): 1173-1179. doi: 10.2136/sssaj1987.03615995005100050015x
    [34] LI Z P, HAN C W, HAN F X. Organic C and N mineralization as affected by dissolved organic matter in paddy soils of subtropical China[J]. Geoderma, 2010, 157(3-4): 206-213. doi: 10.1016/j.geoderma.2010.04.015
    [35] YANG L X, PAN J J, YUAN S F. Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China[J]. Journal of Forestry Research, 2006, 17(1): 39-43. doi: 10.1007/s11676-006-0009-1
    [36] TURETSKY M R. Decomposition and organic matter quality in continental peatlands: the ghost of permafrost past[J]. Ecosystems, 2004, 7(7): 740-750. doi: 10.1007/s10021-004-0247-z
    [37] FONTAINE S, BAROT S, BARRÉ P, et al. Stability of organic carbon in deep soil layers controlled by fresh carbon supply[J]. Nature, 2007, 450: 277-280. doi: 10.1038/nature06275
    [38] REY A, JARVIS P. Modelling the effect of temperature on carbon mineralization rates across a network of European forest sites (FORCAST)[J]. Global Change Biology, 2006, 12(10): 1894-1908. doi: 10.1111/j.1365-2486.2006.01230.x
    [39] 王丹, 吕瑜良, 徐丽, 等.植被类型变化对长白山森林土壤碳矿化及其温度敏感性的影响[J].生态学报, 2013, 33 (19): 6373-6381. http://d.old.wanfangdata.com.cn/Periodical/stxb201319051

    WANG D, LV Y L, XU L, et al. Impact of changes in vegetation types on soil C mineralization and associated temperature sensitivity in the Changbai Mountain forests of China[J]. Acta Ecologica Sinica, 2013, 33(19): 6373-6381. http://d.old.wanfangdata.com.cn/Periodical/stxb201319051
    [40] CHEN C R, XU Z H. Analysis and behavior of soluble organic nitrogen in forest soils[J]. Journal of Soils & Sediments, 2008, 8(6): 363-378. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=9d3366516a458223782e2065bd046f92
    [41] LU S, CHEN C, ZHOU X, et al. Responses of soil dissolved organic matter to long-term plantations of three coniferous tree species[J]. Geoderma, 2012, 170(3): 136-143. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d3cce6c1cf3417a3939836986a28dde8
    [42] WALLACE K L, MIDDLETON S, COOKⅠ J. Response of labile soil organic matter to changes in forest vegetation in subtropical regions[J]. Applied Soil Ecology, 2011, 47(3): 210-216. doi: 10.1016/j.apsoil.2010.12.004
    [43] XING S H, CHEN C R, ZHOU B Q, et al. Soil soluble organic nitrogen and microbial processes under adjacent coniferous and broadleaf plantation forests[J]. Journal of Soils and Sediments, 2010, 10: 1071-1081. doi: 10.1007/s11368-010-0191-9
    [44] 周炎, 徐宪根, 阮宏华, 等.武夷山不同海拔高度土壤有机碳矿化速率的比较[J].生态学杂志, 2008, 27(11): 1901-1907. http://d.old.wanfangdata.com.cn/Periodical/stxzz200811010

    ZHOU Y, XU X G, RUAN H H, et al. Mineralization rates of soil organic carbon along an elevation gradient in Wuyi Mountain of Southeast China[J]. Chinese Journal of Ecology, 2008, 27(11): 1901-1907. http://d.old.wanfangdata.com.cn/Periodical/stxzz200811010
    [45] YANG L, PAN J, SHAO Y, et al. Soil organic carbon decomposition and carbon pools in temperate and sub-tropical forests in China[J]. Journal of Environmental Management, 2007, 85(3): 690-695. doi: 10.1016/j.jenvman.2006.09.011
    [46] 高菲, 林维, 崔晓阳.小兴安岭两种森林类型土壤有机碳矿化的季节动态[J].应用生态学报, 2016, 27(1): 9-16. http://d.old.wanfangdata.com.cn/Periodical/yystxb201601002

    GAO F, LIN W, CUI X Y. Seasonal dynamics of soil organic carbon mineralization for two forest types in Xiaoxing'an Mountains, China[J]. Chinese Journal of Applied Ecology, 2016, 27(1): 9-16. http://d.old.wanfangdata.com.cn/Periodical/yystxb201601002
    [47] NELSON P N, DICTOR M C, SOULAS G. Availability of organic carbon in soluble and particle-size fractions from a soil profile[J]. Soil Biology & Biochemistry, 1994, 26(11): 1549-1555. https://www.sciencedirect.com/science/article/abs/pii/0038071794900973
    [48] GHANI A, DEXTER M, PERROTT K W. Hot-water extractable carbon in soils: a sensitive measurement for determining impacts of fertilisation, grazing and cultivation[J]. Soil Biology & Biochemistry, 2003, 35(9): 1231-1243. https://www.sciencedirect.com/science/article/abs/pii/S003807170300186X
    [49] CHODAK M, KHANNA P, BEESE F. Hot water extractable C and N in relation to microbiological properties of soils under beech forests[J]. Biology & Fertility of Soils, 2003, 39(2): 123-130.
    [50] KALBITZ K, SCHWESIG D, SCHMERWITZ J, et al. Changes in properties of soil-derived dissolved organic matter induced by biodegradation[J]. Soil Biology & Biochemistry, 2003, 35(8): 1129-1142. https://www.sciencedirect.com/science/article/abs/pii/S0038071703001652
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  668
  • HTML全文浏览量:  131
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-22
  • 修回日期:  2016-05-30
  • 刊出日期:  2017-02-01

目录

    /

    返回文章
    返回