高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于结构方程模型的羊柴灌丛与沙地土壤间耦合关系

王树力 梁晓娇 马超 周健平

王树力, 梁晓娇, 马超, 周健平. 基于结构方程模型的羊柴灌丛与沙地土壤间耦合关系[J]. 北京林业大学学报, 2017, 39(1): 1-8. doi: 10.13332/j.1000-1522.20160101
引用本文: 王树力, 梁晓娇, 马超, 周健平. 基于结构方程模型的羊柴灌丛与沙地土壤间耦合关系[J]. 北京林业大学学报, 2017, 39(1): 1-8. doi: 10.13332/j.1000-1522.20160101
WANG Shu-li, LIANG Xiao-jiao, MA Chao, ZHOU Jian-ping. Coupling relationship between Hedysarum mongdicum shrub plantation and sand soil based on structural equation model[J]. Journal of Beijing Forestry University, 2017, 39(1): 1-8. doi: 10.13332/j.1000-1522.20160101
Citation: WANG Shu-li, LIANG Xiao-jiao, MA Chao, ZHOU Jian-ping. Coupling relationship between Hedysarum mongdicum shrub plantation and sand soil based on structural equation model[J]. Journal of Beijing Forestry University, 2017, 39(1): 1-8. doi: 10.13332/j.1000-1522.20160101

基于结构方程模型的羊柴灌丛与沙地土壤间耦合关系

doi: 10.13332/j.1000-1522.20160101
基金项目: 

科技成果国家级推广项目“流动沙地沙障治理模式推广” 2010-30

详细信息
    作者简介:

    王树力,教授,博士生导师。主要研究方向:恢复生态学。Email:shuliwang@163.com  地址:150040  黑龙江省哈尔滨市香坊区和兴路26号东北林业大学林学院

  • 中图分类号: S718.54+2

Coupling relationship between Hedysarum mongdicum shrub plantation and sand soil based on structural equation model

  • 摘要: 为弄清羊柴灌丛与沙地土壤之间的耦合关系,以浑善达克沙地为对象,选择保育状况良好的羊柴种植沙地,构建了样地位置—羊柴灌丛—沙地土壤物理性质—沙地土壤化学性质的结构方程模型。结果表明:沙地恢复15年后,羊柴灌丛的盖度与密度、土壤物理性质和土壤化学性质均表现出不同程度的空间异质性;羊柴植被的盖度与密度对0~10 cm、10~20 cm、20~40 cm土层土壤的物理性质和化学性质多有正影响,总路径系数分别为0.01、0.42、0.50和-0.07、0.49、0.79;0~10 cm、10~20 cm和20~40 cm土层土壤的物理性质对土壤的化学性质均具有正影响,总路径系数分别为0.80、0.89和1.00;样地位置通过影响羊柴灌丛的盖度与密度而对0~10 cm、10~20 cm和20~40 cm土层的土壤物理性质产生间接影响,间接影响系数分别为-0.01、-0.26和-0.38;样地位置通过影响羊柴灌丛的盖度与密度及土壤物理性质而对0~10 cm、10~20 cm和20~40 cm土层的土壤化学性质产生间接影响,间接影响系数分别为-0.15、-0.02和-0.30;羊柴灌丛的盖度与密度通过影响土壤物理性质而间接影响0~10 cm、10~20 cm和20~40 cm土层的土壤化学性质,间接影响系数分别为0.01、0.37和0.50。沙地植被的生态恢复除自然恢复外,可种植羊柴等沙生灌丛以改善沙地土壤的肥力指标,加快沙地植被的恢复。

     

  • 图  1  羊柴灌丛与沙地土壤间耦合关系的结构方程模型路径图

    ξ1为样地位置,ξ2为羊柴灌丛,ξ3为土壤物理性质,ξ4为土壤化学性质;x1为经度,x2为纬度,x3为羊柴灌丛盖度,x4为羊柴灌丛密度,x5为土壤密度,x6为土壤含水量,x7为土壤pH值,x8为土壤分数维,x9为土壤有机碳含量,x10为土壤全N含量,x11为土壤全P含量,x12为土壤水解N含量,x13为土壤有效P含量,x14为土壤速效K含量;r1r2,…,r14分别为观测变量x1x2,…,x14对相应潜在变量ξ1ξ2ξ3ξ4的贡献系数;R1R2,…,R6为路径系数。

    Figure  1.  SEM path map of the coupling relationships between H. mongdicum shrub plantation and sand soil

    ξ1 is site location, ξ2 is Hedysarum mongdicum shrub plantation, ξ3 is soil physical property, ξ4 is soil chemical property; x1 is longitude, x2 is latitude, x3 is the coverage of H. mongdicum shrub plantation, x4 is the density of H. mongdicum shrub plantation, x5 is soil bulk density, x6 is soil water content, x7 is soil pH, x8 is fractal dimension of soil, x9 is soil organic C content, x10 is soil total N content, x11 is soil total P content, x12 is soil available N content, x13 is soil available P content, x14 is soil available K content; r1, r2, …, r14 are contribution coefficients of the observing variables x1, x2, …, x14 to the corresponding potential variables ξ1-ξ3 and ξ4; R1, R2, …, R6 are path coefficients.

    表  1  研究地点植被与土壤概况

    Table  1.   Characteristics of vegetation and soil in study area

    特征指标Property index0~10 cm土层
    0-10 cm soil layer
    10~20 cm土层
    10-20 cm soil layer
    20~40 cm土层
    20-40 cm soil layer
    经度Longitude117°21′36″~117°21′53″E
    纬度Latitude43°13′08″~43°13′14″N
    羊柴盖度Coverage of Hedysarum mongdicum/%14.74(0~52.00)
    羊柴密度(株·hm-2) Density of H. mongdicum/(tree·ha-1)2 714(0~15 040)
    土壤密度Soil bulk density/(g·cm-3)1.50(0.81~1.71)1.60(1.28~1.72)1.62(1.41~1.73)
    土壤含水量Soil water content/%0.78(0.26~2.67)1.38(0.52~3.52)2.48(0.83~9.01)
    土壤pH值Soil pH6.68(6.07~7.60)6.69(5.20~8.35)6.63(6.00~7.31)
    土壤分数维Fractal dimension of soil2.50(2.40~2.84)2.39(2.25~2.54)2.35(2.12~2.54)
    土壤有机碳含量Soil organic C content/(g·kg-1)4.04(0.18~21.94)1.52(0.16~5.93)1.81(0.14~9.87)
    土壤全N含量Total N content of soil/(g·kg-1)0.39(0.10~1.54)0.18(0.07~0.73)0.18(0.04~0.85)
    土壤全P含量Total P content of soil/(g·kg-1)1.32(0.57~4.62)0.76(0.39~1.66)0.86(0.38~2.43)
    土壤水解N含量Available N content of soil/(mg·kg-1)29.71(1.63~95.19)19.79(0.47~59.82)14.24(0.46~64.41)
    土壤有效P含量Available P content of soil/(mg·kg-1)27.06(9.79~60.93)11.31(5.66~29.72)12.01(5.63~26.01)
    土壤速效K含量Available K content of soil/(mg·kg-1)86.41(26.13~278.21)56.17(10.97~153.24)40.06(16.31~83.44)
    注:表中数值为平均值,括号内数值为值的范围。Notes:Data in the table is average value and the data in bracket is the range of value.
    下载: 导出CSV

    表  2  羊柴灌丛与沙地土壤间耦合关系的结构方程模型拟合参数

    Table  2.   Fitting parameters of the structural equation model for the coupling relationship between H. mongdicum shrub plantation and sand soil

    统计量
    Statistics
    参数名称
    Parameter name
    参数含义
    Parameter meaning
    评价标准
    Evaluation standard
    0~10 cm土层
    0-10 cm soil layer
    10~20 cm土层
    10-20 cm soil layer
    20~40 cm土层
    20-40 cm soil layer
    绝对适配统计量
    Absolutely fit statistics
    χ2/df卡方自由度比
    Chi-square degrees of freedom
    <31.931.661.21
    P显著性概率值
    Significant probability value
    >0.050.090.110.13
    GFI适配度指数
    Fit index
    >0.900.900.940.99
    增值适配统计量
    Value-added fit statistics
    NFI规准适配指数
    Regular fit index
    介于0~1之间,越接近1,表示模型适配度越好
    Between 0 and 1, the bigger the fit index is, the better the fit degree is
    0.870.920.97
    RFI相对适配指数
    Relative fit index
    0.870.900.95
    IFI增值适配指数
    Value-added fit index
    0.880.930.99
    TLI非规准适配指数
    Irregular fit index
    0.880.900.99
    CFI比较适配指数
    Comparatively fit index
    0.880.930.99
    简约适配统计量
    Simlpe fit statistics
    NCP非中心参数
    Non center parameter
    越小越好
    The smaller, the better
    51.6240.5811.68
    下载: 导出CSV

    表  3  各土层观测变量对潜在变量的贡献系数

    Table  3.   Contribution coefficients of observing variables to the latent variables of various soil layers

    观测变量
    Observing variable
    0~10 cm土层
    0-10 cm soil layer
    10~20 cm土层
    10-20 cm soil layer
    20~40 cm土层
    20-40 cm soil layer
    位置Location羊柴灌丛H. mongdi-cum shrub planta-tion物理性质Physical proper-ties化学性质Chemical proper-ties位置Location羊柴灌丛H. mongdi-cum shrub planta-tion物理性质Physical proper-ties化学性质Chemical proper-ties位置Location羊柴灌丛H. mongdi-cum shrub planta-tion物理性质Physical propertie化学性质Chemical proper-ties
    经度
    Longitude
    1.001.000.88
    纬度
    Latitude
    0.740.760.71
    羊柴盖度
    Coverage of H. mongdicum
    0.960.990.97
    羊柴密度
    Density of H. mongdicum
    0.910.890.92
    土壤密度
    Soil bulk density
    -0.77-0.65-0.76
    土壤含水量
    Soil water content
    0.220.490.74
    土壤pH值
    Soil pH
    0.090.460.25
    土壤分数维
    Fractal dimension of soil
    0.730.560.52
    土壤有机碳含量
    Soil organic C content
    0.890.730.79
    全N含量
    Total N content
    0.960.720.94
    全P含量
    Total P content
    0.710.690.88
    水解N含量
    Available N content
    0.560.410.58
    有效P含量
    Available P content
    0.590.590.42
    速效K含量
    Available K content
    0.450.370.41
    下载: 导出CSV

    表  4  各土层潜在变量间耦合关系的路径系数

    Table  4.   Path coefficients of coupling relationship in latent variable of each soil layer

    影响
    Influence
    潜在变量
    Latent variables
    0~10 cm土层
    0-10 cm soil layer
    10~20 cm土层
    10-20 cm soil layer
    20~40 cm土层
    20-40 cm soil layer
    位置
    Location
    羊柴灌丛
    H. mongdicum shrub plantation
    物理性质
    Physical properties
    位置
    Location
    羊柴灌丛
    H. mongdicum shrub plantation
    物理性质
    Physical properties
    位置
    Location
    羊柴灌丛
    H. mongdicum shrub plantation
    物理性质
    Physical properties
    总影响
    Total influence
    羊柴灌丛
    H. mongdicum shrub plantation
    -0.57-0.61-0.75
    物理性质
    Physical properties
    -0.260.01-0.200.42-0.460.50
    化学性质
    Chemical properties
    -0.11-0.070.80-0.210.490.89-0.500.791.00
    直接影响
    Direct influencet
    羊柴灌丛
    H. mongdicum shrub plantation
    -0.57-0.61-0.75
    物理性质
    Physical properties
    -0.250.010.060.42-0.080.50
    化学性质
    Chemical properties
    0.04-0.080.80-0.190.120.89-0.200.291.00
    间接影响
    Indirect influence
    羊柴灌丛
    H. mongdicum shrub plantation
    物理性质
    Physical properties
    -0.01-0.26-0.38
    化学性质
    Chemical properties
    -0.150.01-0.020.37-0.300.50
    下载: 导出CSV
  • [1] 左小安, 赵学勇, 赵哈林, 等.沙地退化植被恢复过程中灌木发育对草本植物和土壤的影响[J].生态环境学报, 2009, 18(2): 643-647. doi: 10.3969/j.issn.1674-5906.2009.02.046

    ZUO X A, ZHAO X Y, ZHAO H L, et al. Effects of shrub on understory herbaceous plants and soil properties in the restoration processes of degraded vegetation in Horqin Sand Land[J]. Ecology and Environmental Sciences, 2009, 18(2): 643-647. doi: 10.3969/j.issn.1674-5906.2009.02.046
    [2] 李新荣.干旱沙区土壤空间异质性变化对植被恢复的影响[J].中国科学D辑(地球科学), 2005, 35 (4): 361-370. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200504008

    LI X R. Influence of soil spatial heterogeneity variation in arid desert area on vegetation restoration[J]. Science in China Series D(Earth Sciences), 2005, 35 (4): 361-370. http://d.old.wanfangdata.com.cn/Periodical/zgkx-cd200504008
    [3] 王贤, 丁国栋, 蔡京艳, 等.浑善达克沙地沙漠化成因及其综合防治[J].水土保持学报, 2004, 18 (1): 147-150, 188. doi: 10.3321/j.issn:1009-2242.2004.01.039

    WANG X, DING G D, CAI J Y, et al. Causes and comprehensive control measures of desertification in Hunshandake sand land[J]. Journal of Soil and Water Conservation, 2004, 18 (1): 147-150, 188. doi: 10.3321/j.issn:1009-2242.2004.01.039
    [4] 郭元朝, 郭尧.全面实施治沙造林种草工程加快浑善达克沙地植被恢复进程[J].内蒙古草业, 2010, 22 (3): 36-39. doi: 10.3969/j.issn.2095-5952.2010.03.008

    GUO Y C, GUO Y. The full implementation of sand control afforestation and grass to speed up the Hunshandake sandy vegetation restoration process[J]. Inner Mongolia Prataculture, 2010, 22 (3): 36-39. doi: 10.3969/j.issn.2095-5952.2010.03.008
    [5] 武健伟, 赵廷宁, 鲁瑞洁.浑善达克沙地现代土地沙漠化发展动态与成因分析[J].中国水土保持科学, 2003, 1 (4): 36-40. doi: 10.3969/j.issn.1672-3007.2003.04.009

    WU J W, ZHAO T N, LU R J. Development and reasons of sandy desertification in otindag sandy land during the modern period[J]. Science of Soil and Water Conservation, 2003, 1 (4): 36-40. doi: 10.3969/j.issn.1672-3007.2003.04.009
    [6] 陈平平, 丁国栋, 王贤.浅谈浑善达克沙地综合治理模式[J].水土保持学报, 2003, 17(5): 74-76. doi: 10.3321/j.issn:1009-2242.2003.05.021

    CHEN P P, DING G D, WANG X. Discuss on compositive mode of harnessing Hunshandake sand land[J]. Journal of Soil and Water Conservation, 2003, 17(5): 74-76. doi: 10.3321/j.issn:1009-2242.2003.05.021
    [7] 刘鸿雁, 田育红, 丁登.内蒙古浑善达克沙地和河北坝上地区不同地表覆盖类型对北京沙尘天气物源的贡献[J].科学通报, 2003, 48(11): 1229-1232. doi: 10.3321/j.issn:0023-074X.2003.11.023

    LIU H Y, TIAN Y H, DING D. The contribution of different land cover types in Hunshandake of Inner Mongolia and Bashang area of Hebei to the sand dust weather source in Beijing[J]. Chinese Science Bulletin, 2003, 48(11): 1229-1232. doi: 10.3321/j.issn:0023-074X.2003.11.023
    [8] 姜维新, 张荔浑.浑善达克沙地封育保护的生态经济效益评价[J].内蒙古林业科技, 2006, 32(4): 39-41. doi: 10.3969/j.issn.1007-4066.2006.04.014

    JIANG W X, ZHANG L H. Evaluation of the ecological and economic benefit of the enclosure and protection of the Hunshandake sandy land[J]. Inner Mongolia Forestry Science and Technology, 2006, 32 (4): 39-41. doi: 10.3969/j.issn.1007-4066.2006.04.014
    [9] 元志辉, 包刚, 银山, 等. 2000—2014年浑善达克沙地植被覆盖变化研究[J].草业学报, 2016, 25(1): 33-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb201601004

    YUAN Z H, BAO G, YIN S, et al. Vegetation changes in Otindag sand country during 2000-2014[J]. Acta Prataculturae Sinica, 2016, 25(1): 33-46. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=caoyexb201601004
    [10] 张文军, 刘德义, 李泽江, 等.科尔沁沙地植物再生沙障人工群落结构特征[J].中国水土保持科学, 2007, 10(5): 56-59. doi: 10.3969/j.issn.1672-3007.2007.05.010

    ZHANG W J, LIU D Y, LI Z J, et al. Characteristics of artificial communities structure of plant regenerative sand-barrier in Horqin sandy land[J]. Science of Soil and Water Conservation, 2007, 10(5): 56-59. doi: 10.3969/j.issn.1672-3007.2007.05.010
    [11] 孙保平.荒漠化防治工程学[M].北京:中国林业出版社, 2000: 118-126.

    SUN B P. Prevention and control of desertification[M]. Beijing: China Forestry Publishing House, 2000: 118-126.
    [12] 杨东华, 赵雨森.不同生境对踏郎生长及土壤养分空间差异的影响[J].林业科学, 2011, 47(2): 180-186. http://d.old.wanfangdata.com.cn/Periodical/lykx201102026

    YANG D H, ZHAO Y S. Effects of site condition on growth and spatial variations of Hedysarum leave[J]. Scientia Silvae Sinicae, 2011, 47(2): 180-186. http://d.old.wanfangdata.com.cn/Periodical/lykx201102026
    [13] 张昌胜, 刘国彬, 薛萐, 等.不同沙生植被土壤微团聚体分形特征及抗蚀性[J].水土保持通报, 2012, 32(2): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbctb201202002

    ZHANG C S, LIU G B, XUE S, et al. Anti-erodibility and microaggregate fractal features of soils under different psammophytes[J]. Bulletin of Soil and Water Conservation, 2012, 32(2): 1-6. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=stbctb201202002
    [14] 杨晓娟, 廖超英, 刘莉丽, 等, 毛乌素沙地不同植被对土壤有机质和生物学特性的影响[J].西北农林科技大学学报(自然科学版), 2012, 40(3): 77-83. http://www.cqvip.com/QK/90760A/201203/41375760.html

    YANG X J, LIAO C Y, LIU L L, et al. Effect of different vegetations on soil organica matter and biological properties in Muus Sandland[J]. Journal of Northwest A & F University (Nat. Sci. Ed.), 2012, 40(3): 77-83. http://www.cqvip.com/QK/90760A/201203/41375760.html
    [15] 王酉石, 储诚进.结构方程模型及其在生态学中的应用[J].植物生态学报, 2011, 35(3): 337-344. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201103012

    WANG Y S, CHU C J. A brief introduction of structural equation model and its application in ecology[J]. Chinese Journal of Plant Ecology, 2011, 35(3): 337-344. http://d.old.wanfangdata.com.cn/Periodical/zwstxb201103012
    [16] 王树力, 周健平.基于结构方程模型的林分生长与影响因子耦合关系分析[J].北京林业大学学报, 2014, 36(5): 7-12. doi: 10.13332/j.cnki.jbfu.2014.05.011

    WANG S L, ZHOU J P. Coupling relationship between stand growth and impacting factors based on structural equation model[J]. Journal of Beijing Forestry University, 2014, 36(5): 7-12. doi: 10.13332/j.cnki.jbfu.2014.05.011
    [17] 陈立新.土壤实验实习教程[M].哈尔滨:东北林业大学出版社, 2005.

    CHEN L X. The soil experiment practice tutorial[M]. Harbin: Northeast Forestry University Press, 2005.
    [18] 杨培岭, 罗远培, 石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报, 1993, 38(20): 1896-1899. doi: 10.3321/j.issn:0023-074X.1993.20.010

    YANG P L, LUO Y P, SHI Y C. Fractal features of soils characterized by grain weight distribution[J]. Chinese Science Bulletin, 1993, 38(20): 1896-1899. doi: 10.3321/j.issn:0023-074X.1993.20.010
    [19] 吴明隆.结构方程模型[M].重庆:重庆大学出版社, 2009: 10.

    WU M L. Structural equation model[M]. Chongqing: Chongqing University Press, 2009: 10.
    [20] 荣泰生. AMOS与研究方法[M].重庆:重庆大学出版社, 2009: 118-120.

    RONG T S. AMOS and research method[M]. Chongqing: Chongqing University Press, 2009: 118-120.
    [21] 赵岩, 周文渊, 孙保平, 等.毛乌素沙地三种荒漠灌木根系分布特征与土壤水分研究[J].水土保持研究, 2010, 17(4): 129-133. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201004028

    ZHAO Y, ZHOU W Y, SUN B P, et al. Root distribution of three desert shrubs and soil moisture in Mu Us sand land[J]. Research of Soil and Water Conservation, 2010, 17(4): 129-133. http://d.old.wanfangdata.com.cn/Periodical/stbcyj201004028
    [22] 于顺利.中国温带疏林的地理分布、生态地位及成因[J].科技导报, 2011, 29(25): 26-29. doi: 10.3981/j.issn.1000-7857.2011.25.003

    YU S L. Geographical distribution, ecological position, and formation causes of temperate zone sparse forest in China[J]. Science & Technology Review, 2011, 29(25): 26-29. doi: 10.3981/j.issn.1000-7857.2011.25.003
    [23] 杨雪梅, 杨太保, 刘海猛, 等.气候变暖背景下近30 a北半球植被变化研究综述[J].干旱区研究, 2016, 33(2): 379-391. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201602021

    YANG X M, YANG T B, LIU H M, et al. Vegetation variation in the North hemisphere under climate warming in the last 30 years[J]. Arid Zone Research, 2016, 33(2): 379-391. http://d.old.wanfangdata.com.cn/Periodical/ghqyj201602021
    [24] 贾恒义, 彭祥林, 穆兴民, 等.黄土高原草地土壤物理性质初步研究[J].水土保持通报, 1993, 13(4): 20-25. http://www.cqvip.com/QK/95720X/199304/1174250.html

    JIA H Y, PENG X L, MU X M, et al. Research on soil physical properties of grass land in the Loess Plateau[J]. Bulletin of water and soil conservation, 1993, 13(4): 20-25. http://www.cqvip.com/QK/95720X/199304/1174250.html
    [25] 石莎, 冯金朝, 邹学勇.不同地形条件对沙漠植物生长和沙地土壤水分的影响[J].干旱区地理, 2007, 30(6): 846-851. http://d.old.wanfangdata.com.cn/Periodical/ghqdl200706010

    SHI S, FENG J C, ZOU X Y. Effects of the fixed dune topography on soil water and plant growth[J]. Arid Land Geography, 2007, 30(6): 846-851. http://d.old.wanfangdata.com.cn/Periodical/ghqdl200706010
    [26] 靳正忠, 雷加强, 徐新文, 等.流动沙漠腹地咸水滴灌林地土壤微生物的种群特征[J].应用与环境生物学报, 2009, 15 (2): 192-196. http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200902007

    JIN Z Z, LEI J Q, XU X W, et al. Characteristics of soil microbial population of the forest land irrigated with salt water in drift desert hinterland[J]. Chinese Journal of Applied and Environmental Biology, 2009, 15(2): 192-196. http://d.old.wanfangdata.com.cn/Periodical/yyyhjswxb200902007
    [27] 苏永中, 赵哈林, 张铜会.几种灌木、半灌木对沙地土壤肥力影响机制的研究[J].应用生态学报, 2002, 13(7): 802-806. doi: 10.3321/j.issn:1001-9332.2002.07.008

    SU Y Z, ZHAO H L, ZHANG T H. Influencing mechanism of several shrubs and subshrubs on soil fertility in Herqin Sandy Land[J]. Chinese Journal of Applied Ecology, 2002, 13(7): 802-806. doi: 10.3321/j.issn:1001-9332.2002.07.008
    [28] MARTINEZ-MEZA E, WHITFORD W G. Stem flow through fall and channelization of stem flow by roots in three Chinhuahuan desert shrubs[J]. Journal of Arid Environments, 1996, 32: 271-287. doi: 10.1006/jare.1996.0023
  • 加载中
图(1) / 表(4)
计量
  • 文章访问数:  1501
  • HTML全文浏览量:  181
  • PDF下载量:  56
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-23
  • 修回日期:  2016-10-08
  • 刊出日期:  2017-01-01

目录

    /

    返回文章
    返回