高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮素化学形态及添加剂量对温带森林土壤N2O排放的影响

许可 王春梅 张艺 杨欣桐 韩金锋 桂蓉蓉

许可, 王春梅, 张艺, 杨欣桐, 韩金锋, 桂蓉蓉. 氮素化学形态及添加剂量对温带森林土壤N2O排放的影响[J]. 北京林业大学学报, 2017, 39(3): 74-80. doi: 10.13332/j.1000-1522.20160103
引用本文: 许可, 王春梅, 张艺, 杨欣桐, 韩金锋, 桂蓉蓉. 氮素化学形态及添加剂量对温带森林土壤N2O排放的影响[J]. 北京林业大学学报, 2017, 39(3): 74-80. doi: 10.13332/j.1000-1522.20160103
XU Ke, WANG Chun-mei, ZHANG Yi, YANG Xin-tong, HAN Jin-feng, GUI Rong-rong. Effects of different nitrogen addition forms and levels on N2O emission in the temperate forest soil[J]. Journal of Beijing Forestry University, 2017, 39(3): 74-80. doi: 10.13332/j.1000-1522.20160103
Citation: XU Ke, WANG Chun-mei, ZHANG Yi, YANG Xin-tong, HAN Jin-feng, GUI Rong-rong. Effects of different nitrogen addition forms and levels on N2O emission in the temperate forest soil[J]. Journal of Beijing Forestry University, 2017, 39(3): 74-80. doi: 10.13332/j.1000-1522.20160103

氮素化学形态及添加剂量对温带森林土壤N2O排放的影响

doi: 10.13332/j.1000-1522.20160103
基金项目: 

中央高校基本科研业务费专项 2016JX02

北京林业大学大学生创新训练项目 S201610022116

国家自然科学基金项目 41373069

详细信息
    作者简介:

    许可。主要研究方向:全球气候变化及生物地球化学循环。Email: xuke920328@163.com  地址:100083  北京市海淀区清华东路35号北京林业大学环境科学与工程学院

    责任作者:

    王春梅,副教授。主要研究方向:全球气候变化及生物地球化学循环。Email:wangcm@bjfu.edu.cn  地址:同上

  • 中图分类号: S714.3

Effects of different nitrogen addition forms and levels on N2O emission in the temperate forest soil

  • 摘要: 土壤中氮形态和氮剂量的有效性是影响土壤氧化亚氮(N2O)排放的重要因子。为了提高氮素化学形态及添加剂量对温带森林土壤N2O排放的影响,本研究在北京林业大学实验林场,以温带油松林土壤为研究对象,通过野外氮添加控制实验,采用静态箱/气相色谱法分析不同水平(对照,CK:0 kg/(hm2·a); 低氮,LN:50 kg/(hm2·a); 中氮,MN:100 kg/(hm2·a); 高氮,HN:150 kg/(hm2·a))和不同形态(混合态氮,AN:NH4NO3; 铵态氮,As:(NH4)2SO4; 硝态氮,Na:NaNO3)的氮添加对温带油松林土壤N2O排放通量的影响。结果表明:氮添加处理样地N2O排放表现出明显的季节性变化特征,排放高峰出现在6—8月,其他季节土壤N2O排放通量相对较低,最小值出现在1月。不同氮添加处理均促进了土壤N2O的排放:在不同水平的氮添加下,随着氮添加水平的增加,土壤N2O排放通量也升高,表现为HN>MN>LN>CK。不同形态的氮输入对N2O排放的促进作用表现为:AN>As>Na,As添加与AN和Na添加没有显著差异(P>0.05),但AN添加与Na添加之间差异显著(P<0.05)。此外,空气温度、土壤温度和土壤孔隙含水量也可以影响土壤N2O的排放。年度土壤N2O排放系数范围是0.34%~0.94%,年均排放系数为0.364%,低于联合国政府间气候变化委员会(IPCC)推荐的默认值。

     

  • 图  1  实验期内大气、土壤温度(a)和土壤水充孔隙空间(b)变化

    Figure  1.  Variations of temperature (a) and water filled pore space (b) in the observed period

    图  2  不同水平(a)和不同形态(b)的氮添加处理下土壤N2O通量季节变化特征

    Figure  2.  Seasonal variations of soil N2O fluxes under different N-level (a) and N-form (b) addition

    图  3  年度N2O累积排放量与氮添加量的关系

    Figure  3.  Relationship between annual cumulative N2O emission and N addition amount

    表  1  土壤基本理化性质

    Table  1.   Background values of soil physiochemical properties (Mean±SE, n=3)

    森林类型
    Forest type
    pH有机质
    Organic matter/(g·kg-1)
    全氮
    Total nitrogen/(g·kg-1)
    NH4+-N/(mg·kg-1)NO3--N/(mg·kg-1)
    油松Pinus tabuliformis6.31±0.3644.4±1.882.31±0.231.29±0.260.75±0.25
    下载: 导出CSV

    表  2  6—8月不同形态和水平的氮添加下土壤各样地N2O排放通量重复测量方差分析

    Table  2.   Results of repeated measures ANOVA of soil N2O emission under different N-level and N-form addition from June to August

    项目Item变异VariationFP
    不同水平氮添加 Different N addition level时间Time853.815<0.001
    氮水平N level186.904<0.001
    时间×氮水平Time×N level97.604<0.001
    不同形态氮添加 Different N addition form时间Time1 266.148<0.001
    氮形态N form1 300.398<0.001
    时间×氮形态Time×N form262.870<0.001
    下载: 导出CSV

    表  3  不同水平和形态氮添加下土壤N2O的年累积排放量和排放系数

    Table  3.   Annual N2O cumulative fluxes and soil N2O emission factor under different N-level and N-form addition

    项目
    Item
    不同水平氮添加Different N addition level不同形态氮添加Different N addition form
    CKLNMNHNANNaAs
    累积排放/(kg·hm-2) Cumulative emission/ (kg·ha-1)0.40±0.04 c0.82±0.06 b0.84±0.04 b1.00±0.06 a0.84±0.04 a0.70±0.04 b0.81±0.04 bc
    排放系数 Emission coefficient/%0.936±0.038 5 a0.497±0.004 0 b0.453±0.018 0 b0.497±0.004 0 a0.343±0.000 6 b0.457±0.004 9 a
    注:同一行中不同字母表示处理间差异显著(P<0.05)。Note:Different superscripts of letters in the same row indicate the significant differences at the level of P<0.05 between the treatments.
    下载: 导出CSV
  • [1] FANG Y, YOH M, KOBA K, et al. Nitrogen deposition and forest nitrogen cycling along an urban-rural transect in southern China[J]. Global Change Biology, 2011, 17(2): 872-885. doi: 10.1111/j.1365-2486.2010.02283.x
    [2] GALLOWAY J N, COWLING E B. Reactive nitrogen and the world: 200 years of change[J]. AMBIO: A Journal of the Human Environment, 2002, 31(2): 64-71. doi: 10.1579/0044-7447-31.2.64
    [3] BOBBINK R, HICKS K, GALLOWAY J, et al. Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis[J]. Ecological Applications, 2010, 20(1): 30-59. doi: 10.1890/08-1140.1
    [4] BUTTERBACH-BAHL K, ROTHE A, PAPEN H. Effect of tree distance on N2O and CH4 fluxes from soils in temperate forest ecosystems[J]. Plant and Soil, 2002, 240(1): 91-103. doi: 10.1023/A:1015828701885
    [5] SOLOMON S. IPCC (2007): climate change the physical science basis[J]. American Geophysical Union, 2007, 9(1): 123-124.
    [6] RAVISHANKARA A, DANIEL J S, PORTMANN R W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century[J]. Science, 2009, 326: 123-125. doi: 10.1126/science.1176985
    [7] HANSEN J E, LACIS A A. Sun and dust versus greenhouse gases: an assessment of their relative roles in global climate change[J]. Nature, 1990, 346: 713-719. doi: 10.1038/346713a0
    [8] BRUMME R, VERCHOT L V, MARTIKAINEN P J, et al. Contribution of trace gases nitrous oxide (N2O) and methane (CH4) to the atmospheric warming balance of forest biomes[J]. Seb Experimental Biology, 2005, 27(7): 293-317. http://europepmc.org/abstract/MED/17633041
    [9] 方华军, 程淑兰, 于贵瑞, 等.大气氮沉降对森林土壤甲烷吸收和氧化亚氮排放的影响及其微生物学机制[J].生态学报, 2014, 34(17): 4799-4806. http://d.old.wanfangdata.com.cn/Periodical/stxb201417001

    FANG H J, CHENG S L, YU G R, et al. Microbial mechanisms responsible for the effects of atmospheric nitrogen deposition on methane uptake and nitrous oxide emission in forest soils: a review[J]. Acta Ecologica Sinica, 2014, 34(17): 4799-4806. http://d.old.wanfangdata.com.cn/Periodical/stxb201417001
    [10] 莫江明, 方运霆, 林而达, 等.鼎湖山主要森林土壤N2O排放及其对模拟N沉降的响应[J].植物生态学报, 2006, 30(6): 901-910. doi: 10.3321/j.issn:1005-264X.2006.06.003

    MO J M, FANG Y T, LIN E D, et al. Soil N2O emission and its response to simulated N deposition in the main forests of Ding Hushan in subtropical china[J]. Chinese Journal of Plant Ecology, 2006, 30(6): 901-910. doi: 10.3321/j.issn:1005-264X.2006.06.003
    [11] ADAMS M, INESON P, DAN B, et al. Soil functional responses to excess nitrogen inputs at global scale[J]. Ambio A Journal of the Human Environment, 2004, 33(8): 530-536. doi: 10.1579/0044-7447-33.8.530
    [12] CHEN G C, TAM N F Y, YE Y. Spatial and seasonal variations of atmospheric N2O and CO2 fluxes from a subtropical mangrove swamp and their relationships with soil characteristics[J]. Soil Biology & Biochemistry, 2012, 48(4): 175-181. https://www.sciencedirect.com/science/article/abs/pii/S0038071712000508
    [13] ZHU J, MULDER J, SOLHEIMSLID S O, et al. Functional traits of denitrification in a subtropical forest catchment in China with high atmogenic N deposition[J]. Soil Biology & Biochemistry, 2013, 57(3): 577-586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=52b212985a958c0e6b39fc77f5ccbee8
    [14] PENG Q, QI Y, DONG Y, et al. Soil nitrous oxide emissions from a typical semiarid temperate steppe in Inner Mongolia: effects of mineral nitrogen fertilizer levels and forms[J]. Plant and Soil, 2011, 342(1-2): 345-357. doi: 10.1007/s11104-010-0699-1
    [15] WANG L, CAI Z. Nitrous oxide production at different soil moisture contents in an arable soil in China[J]. Soil Science & Plant Nutrition, 2008, 54(5): 786-793. doi: 10.1111/j.1747-0765.2008.00297.x
    [16] WANG F, LI J, WANG X, et al. Nitrogen and phosphorus addition impact soil N2O emission in a secondary tropical forest of South China[J]. Sci Rep, 2014, 4: 5615-5615. https://www.nature.com/articles/srep05615
    [17] BAI E, LI W, LI S L, et al. Pulse increase of soil N2O emission in response to N addition in a temperate forest on Mt Changbai, Northeast China[J]. Plos One, 2014, 9(7): e102765-e102765. doi: 10.1371/journal.pone.0102765
    [18] LIU X, DONG Y, QI Y, et al. Response of N2O emission to water and nitrogen addition in temperate typical steppe soil in Inner Mongolia, China[J]. Soil and Tillage Research, 2015, 151(1): 9-17. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=27d040258af08910c79d76190dfa17ae
    [19] HATCH D, JARVIS S, PHILIPPS L. Field measurement of nitrogen mineralization using soil core incubation and acetylene inhibition of nitrification[J]. Plant and Soil, 1990, 124(1): 97-107. doi: 10.1007/BF00010937
    [20] DONG Y, ZHANG S, QI Y, et al. Fluxes of CO2, N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation[J]. Chinese Science Bulletin, 2000, 45(17): 1590-1594. doi: 10.1007/BF02886219
    [21] MATSON A, PENNOCK D, BEDARD-HAUGHN A. Methane and nitrous oxide emissions from mature forest stands in the boreal forest, Saskatchewan, Canada[J]. Forest Ecology and Management, 2009, 258(7): 1073-1083. doi: 10.1016/j.foreco.2009.05.034
    [22] YUPING Y, LIQING S, MIN C, et al. Fluxes of CH4 and N2O from soil under a tropical seasonal rain forest in Xishuangbanna, Southwest China[J]. Journal of Environmental Sciences, 2008, 20(2): 207-215. doi: 10.1016/S1001-0742(08)60033-9
    [23] VAN GROENIGEN J W, VELTHOF G L, VAN DER BOLT F J, et al. Seasonal variation in N2O emissions from urine patches: effects of urine concentration, soil compaction and dung[J]. Plant and Soil, 2005, 273(1-2): 15-27. doi: 10.1007/s11104-004-6261-2
    [24] DONOSO L, SANTANA R, SANHUEZA E. Seasonal variation of N2O fluxes at a tropical savannah site: soil consumption of N2O during the dry season[J]. Geophysical Research Letters, 1993, 20(13): 1379-1382. doi: 10.1029/93GL01537
    [25] 欧阳扬, 李叙勇.干湿交替频率对不同土壤CO2和N2O释放的影响[J].生态学报, 2013, 33(4): 1251-1259. http://d.old.wanfangdata.com.cn/Periodical/stxb201304025

    OUYANG Y, LI X Y. Impacts of drying-wetting cycles on CO2 and N2O emissions from soils in different ecosystems[J]. Acta Ecologica Sinica, 2013, 33(4): 1251-1259. http://d.old.wanfangdata.com.cn/Periodical/stxb201304025
    [26] LIN S, IQBAL J, HU R, et al. Nitrous oxide emissions from rape field as affected by nitrogen fertilizer management: a case study in Central China[J]. Atmospheric Environment, 2011, 45(9): 1775-1779. doi: 10.1016/j.atmosenv.2011.01.003
    [27] 陈哲, 陈媛媛, 高霁, 等.不同施肥措施对黄河上游灌区油葵田土壤N2O排放的影响[J].应用生态学报, 2015, 26(1): 129-139. http://d.old.wanfangdata.com.cn/Periodical/yystxb201501018

    CHEN Z, CHEN Y Y, GAO J, et al. Effects of different fertilization measures on N2O emission in oil sunflower field in irrigation area of upper Yellow River[J]. The Journal of Applied Ecology, 2015, 26(1): 129-139. http://d.old.wanfangdata.com.cn/Periodical/yystxb201501018
    [28] 王海云, 邢光熹.不同施氮水平对稻麦轮作农田氧化亚氮排放的影响[J].农业环境科学学报, 2009, 28(12): 2631-2636. doi: 10.3321/j.issn:1672-2043.2009.12.030

    WANG H Y, XING G X. Effect of nitrogen fertilizer rates on nitrous oxide emission from paddy field under rice-wheat rotation[J]. Journal of Agro-Environment Science, 2009, 28(12): 2631-2636. doi: 10.3321/j.issn:1672-2043.2009.12.030
    [29] 蔺照兰, 王春梅, 王汝南.冻融期温带森林土壤N2O排放对模拟大气氮沉降的响应[J].生态环境学报, 2012, 21(11): 1804-1809. doi: 10.3969/j.issn.1674-5906.2012.11.006

    LIN Z L, WANG C M, WANG R N. Effects of simulated N deposition on N2O emssion from temperate forest soil subject to freezing-thawing process[J]. Ecology and Environmental Sciences, 2012, 21(11): 1804-1809. doi: 10.3969/j.issn.1674-5906.2012.11.006
    [30] ZHU J, MULDER J, WU L P, et al. Spatial and temporal variability of N2O emissions in a subtropical forest catchment in China[J]. Biogeosciences, 2013, 10(3): 1309-1321. doi: 10.5194/bg-10-1309-2013
    [31] HEFTING M M, BOBBINK R, DE CALUWE H. Nitrous oxide emission and denitrification in chronically nitrate-loaded riparian buffer zones[J]. Journal of Environmental Quality, 2003, 32(4): 1194-1203. doi: 10.2134/jeq2003.1194
    [32] DAVIDSON E A. Sources of nitric oxide and nitrous oxide following wetting of dry soil[J]. Soil Science Society of America Journal, 1992, 56(1): 95-102. doi: 10.2136/sssaj1992.03615995005600010015x
    [33] LIU D Y, SONG C C. Effects of inorganic nitrogen and phosphorus enrichment on the emission of N2O from a freshwater marsh soil in Northeast China[J]. Environmental Earth Sciences, 2010, 60(4): 799-807. doi: 10.1007/s12665-009-0217-z
    [34] STAPLETON L M, CROUT N M J, SÄWSTRÖM C, et al. Microbial carbon dynamics in nitrogen amended Arctic tundra soil: measurement and model testing[J]. Soil Biology and Biochemistry, 2005, 37(11): 2088-2098. doi: 10.1016/j.soilbio.2005.03.016
    [35] LIU D Y, SONG C C. Effects of phosphorus enrichment on mineralization of organic carbon and contents of dissolved carbon in a freshwater marsh soil[J]. China Environmental Science, 2008, 28(9): 769-774. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zghjkx200809001
    [36] LUBETSKY J, STEINER B A, LANZA R. 2006 IPCC guidelines for national greenhouse gas inventories[M]. Arlington: Institute for Global Environmental Strategies, 2006.
    [37] HE F F, JIANG R F, CHEN Q, et al. Nitrous oxide emissions from an intensively managed greenhouse vegetable cropping system in Northern China[J]. Environmental Pollution, 2009, 157(5): 1666-1672. doi: 10.1016/j.envpol.2008.12.017
  • 加载中
图(3) / 表(3)
计量
  • 文章访问数:  1151
  • HTML全文浏览量:  218
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-28
  • 修回日期:  2016-06-03
  • 刊出日期:  2017-03-01

目录

    /

    返回文章
    返回