高级检索

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

帽儿山天然次生林融雪径流可溶性有机碳时间动态及垂直分布

张著 王传宽

张著, 王传宽. 帽儿山天然次生林融雪径流可溶性有机碳时间动态及垂直分布[J]. 北京林业大学学报, 2016, 38(11): 1-8. doi: 10.13332/j.1000-1522.20160114
引用本文: 张著, 王传宽. 帽儿山天然次生林融雪径流可溶性有机碳时间动态及垂直分布[J]. 北京林业大学学报, 2016, 38(11): 1-8. doi: 10.13332/j.1000-1522.20160114
ZHANG Zhu, WANG Chuan-kuan.. Temporal dynamics and vertical distribution of dissolved organic carbon in snowmelt runoff in a temperate deciduous forest in Maoershan region, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 1-8. doi: 10.13332/j.1000-1522.20160114
Citation: ZHANG Zhu, WANG Chuan-kuan.. Temporal dynamics and vertical distribution of dissolved organic carbon in snowmelt runoff in a temperate deciduous forest in Maoershan region, northeastern China.[J]. Journal of Beijing Forestry University, 2016, 38(11): 1-8. doi: 10.13332/j.1000-1522.20160114

帽儿山天然次生林融雪径流可溶性有机碳时间动态及垂直分布

doi: 10.13332/j.1000-1522.20160114
基金项目: 

“十二五”国家科技支撑计划项目(2011BAD37B01)、教育部长江学者和创新团队发展计划项目(IRT_15R09)。

详细信息
    作者简介:

    张著。主要研究方向:森林生态水文。Email: zhuizhu1988@nefu.edu.cn 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心。   责任作者: 王传宽,教授,博士生导师。主要研究方向:全球变化。Email: wangck—cf@nefu.edu.cn 地址:同上。

    张著。主要研究方向:森林生态水文。Email: zhuizhu1988@nefu.edu.cn 地址:150040 黑龙江省哈尔滨市香坊区和兴路26号东北林业大学生态研究中心。   责任作者: 王传宽,教授,博士生导师。主要研究方向:全球变化。Email: wangck—cf@nefu.edu.cn 地址:同上。

Temporal dynamics and vertical distribution of dissolved organic carbon in snowmelt runoff in a temperate deciduous forest in Maoershan region, northeastern China.

  • 摘要: 融雪期是北方地区可溶性有机碳(DOC)通过融雪径流从陆地生态系统向河流输出的关键时期,因此观测融雪径流DOC动态对分析流域碳流失至关重要。在帽儿山生态站选取东北东部典型天然次生林建立25 m×25 m的水量平衡场,测定分析2014年融雪期不同土层(5、35、65和95 cm)融雪径流DOC含量和通量的时间动态和垂直分布规律。结果表明: 1) 该融雪期土壤水量输入和输出分别为74.2和15.6 mm,径流率高达21%;融雪期DOC输出量与冬季大气输入量基本持平,分别为0.25和0.22 g/m2。2)高峰期DOC含量与其瞬时流量的相关性随土层而变。5和35 cm土层DOC含量与瞬时流量之间均无显著关系(P0.05);65 cm土层则表现出弱负对数关系(R2=0.29,P0.05),而95 cm土层呈现显著线性正相关(R2=0.43,P0.05)。不同土层DOC瞬时通量与瞬时流量之间均极显著正相关(R20.9,P0.001),且产流量越大的土层,其正相关回归方程的斜率也越大,表明水文驱动土壤DOC流失。3)融雪径流产流量和输出DOC通量大小均表现出35 cm5 cm95 cm65 cm土层趋势,其中5和35 cm土层是DOC的主要输出层,占总输出量的70%,而在融雪高峰期可高达90%。由于土壤的滞留作用,DOC含量波动范围随土层加深而向低浓度收敛。

     

  • [1] GREN A, HAEI M, KOHLER S, et al. Regulation of stream water dissolved organic carbon (DOC) concentrations during snowmelt: the role of discharge, winter climate and memory effects[J]. Biogeosciences,2010, 7(9): 2901-2913.
    [1]
    [2] COLE J J, PRAIRIE Y T, CARACO N F, et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget[J]. Ecosystems, 2007, 10(1): 172-185.
    [2] LIU H L, CAI T J, MAN X L, et al.Effects of major forest types of Xiaoxing'an Mountains on the process of snowfall, snow cover and snow melting[J]. Journal of Beijing Forestry University, 2012, 34(2): 20-25.
    [3] ZHANG Q Z, WANG C K. Carbon density and distribution of six Chinese temperate forests[J]. Sci China Life Sci, 2010, 40(7): 621-631.
    [3] DEMERS J D, DRISCOLL C T, SHANLEY J B. Mercury mobilization and episodic stream acidification during snowmelt: role of hydrologic flow paths, source areas, and supply of dissolved organic carbon[J]. Water Resources Research,2010, 46(1): W01511.
    [4] XIONG L, YANG Y S, ZHU J M, et al.Transport characteristics of dissolved organic carbon in different soil horizons in natural Castanopsis carlesii forest[J]. Acta Ecologica Sinica,2015, 35(17): 5711-5720.
    [4] SANDFORD R C, HAWKINS J M, BOL R, et al. Export of dissolved organic carbon and nitrate from grassland in winter using high temporal resolution, in situ UV sensing[J]. Science of the Total Environment,2013, 456-457: 384-391.
    [5] 刘海亮,蔡体久,满秀玲,等. 小兴安岭主要森林类型对降雪、积雪和融雪的影响[J]. 北京林业大学学报, 2012, 34(2): 20-25.
    [5] LIU S, YU G R, JUN A S, et al. The thawing-freeing processes and soil moisture distribution of the steppe in central Mongolian Plateau[J]. Acta Pedologica Snica, 2009, 46(1): 46-51.
    [6] PROKUSHKIN A S, POKROVSKY O S, SHIROKOVA L S, et al. Sources and the flux pattern of dissolved carbon in rivers of the Yenisey Basin draining the Central Siberian Plateau[J]. Environmental Research Letters,2011, 6: 045212.
    [7] WINTERDAHL M, ERLANDSSON M, FUTTER M N, et al. Intra-annual variability of organic carbon concentrations in running waters: drivers along a climatic gradient [J]. Global Biogeochemical Cycles, 2014, 28(4): 451-464.
    [8] KIM S B, SHIN H J, PARK M, et al. Assessment of future climate change impacts on snowmelt and stream water quality for a mountainous high-elevation watershed using SWAT[J]. Paddy and Water Environment, 2015, 13(4): 557-569.
    [9] YUCEL I, GUVENTURK A, SEN O L. Climate change impacts on snowmelt runoff for mountainous transboundary basins in eastern Turkey[J]. International Journal of Climatology,2015, 35(2): 215-228.
    [10] PEICHL M, MOORE T R, ARAIN M A, et al. Concentrations and fluxes of dissolved organic carbon in an age-sequence of white pine forests in Southern Ontario, Canada[J]. Biogeochemistry, 2007, 86(1): 1-17.
    [11] HUA K K, ZHU B, WANG X G. Dissolved organic carbon loss fluxes through runoff and sediment on sloping upland of purple soil in the Sichuan Basin[J]. Nutrient Cycling in Agroecosystems, 2014, 98(2): 125-135.
    [12] GROFFMAN P M, DRISCOLL C T, FAHEY T J, et al. Effects of mild winter freezing on soil nitrogen and carbon dynamics in a northern hardwood forest[J]. Biogeochemistry, 2001, 56(2): 191-213.
    [13] LEMMA B, NILSSON I, KLEJA D B, et al. Decomposition and substrate quality of leaf litters and fine roots from three exotic plantations and a native forest in the southwestern highlands of Ethiopia[J]. Soil Biology and Biochemistry,2007, 39(9): 2317-2328.
    [14] LESSELS J S, TETZLAFF D, CAREY S K, et al. A coupled hydrology-biogeochemistry model to simulate dissolved organic carbon exports from a permafrost-influenced catchment[J]. Hydrological Processes, 2015: 29(26): 1085-1099.
    [15] KOCH J, RUNKEL R, STRIEGL R, et al. Hydrologic controls on the transport and cycling of carbon and nitrogen in a boreal catchment underlain by continuous permafrost[J]. Journal of Geophysical Research: Biogeosciences, 2013, 118(2): 698-712.
    [16] SEBESTYEN S D, BOYER E W, SHANLEY J B, et al. Sources, transformations, and hydrological processes that control stream nitrate and dissolved organic matter concentrations during snowmelt in an upland forest[J]. Water Resources Research,2008, 44: W12410.
    [17] TIPPING E, WOOF C, RIGG E, et al. Climatic influences on the leaching of dissolved organic matter from upland UK moorland soils, investigated by a field manipulation experiment[J]. Environment International, 1999, 25(1): 83-95.
    [18] LIU W, XU X, MCGOFF N M, et al. Spatial and seasonal variation of dissolved organic carbon (DOC) concentrations in Irish streams: importance of soil and topography characteristics[J]. Environmental Management,2014, 53(5): 959-967.
    [19] HOLMES R M, MCLELLAND J W, PETERSON B J, et al. Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas[J]. Estuaries and Coasts, 2012, 35(2): 369-382.
    [20] WANG C, HAN Y, CHEN J Q, et al. Seasonality of soil CO2 efflux in a temperate forest: biophysical effects of snowpack and spring freeze-thaw cycles[J]. Agricultural and Forest Meteorology, 2013, 177: 83-92.
    [21] 张全智, 王传宽. 6种温带森林碳密度与碳分配[J]. 中国科学:生命科学, 2010, 40(7): 621-631.
    [22] STROHMEIER S, KNORR K H, REICHERT M, et al. Concentrations and fluxes of dissolved organic carbon in runoff from a forested catchment: insights from high frequency measurements[J]. Biogeosciences, 2013, 10(2): 905-916.
    [23] FUJII K, UEMURA M, HAYAKAWA C, et al. Fluxes of dissolved organic carbon in two tropical forest ecosystems of East Kalimantan, Indonesia[J]. Geoderma, 2009, 152(1): 127-136.
    [24] PELLERIN B A, SARACENO J F, SHANLEY J B, et al. Taking the pulse of snowmelt: in situ sensors reveal seasonal, event and diurnal patterns of nitrate and dissolved organic matter variability in an upland forest stream[J]. Biogeochemistry,2012, 108(1-3): 183-198.
    [25] 熊丽, 杨玉盛, 朱锦懋, 等. 可溶性有机碳在米槠天然林不同土层中的迁移特征[J]. 生态学报,2015,35(17):5711-5720.
    [26] 刘帅, 于贵瑞, 浅沼顺, 等. 蒙古高原中部草地土壤冻融过程及土壤含水量分布[J]. 土壤学报, 2009, 46(1): 46-51.
    [27] USELMAN S M, QUALLS R G, LILIENFEIN J. Contribution of root vs. leaf litter to dissolved organic carbon leaching through soil[J]. Soil Science Society of America Journal, 2007, 71(5): 1555-1563.
    [28] MICHALZIK B, MATZNER E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem[J]. European Journal of Soil Science,1999, 50(4): 579-590.
    [29] MCCLAIN M E, BOYER E W, DENT C L, et al. Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems[J]. Ecosystems, 2003, 6(4): 301-312.
    [30] ROBSON T M, LAVOREL S, CLEMENT J C, et al. Neglect of mowing and manuring leads to slower nitrogen cycling in subalpine grasslands[J]. Soil Biology and Biochemistry,2007, 39(4): 930-941.
    [31] LAUDON H, SJBLOM V, BUFFAM I, et al. The role of catchment scale and landscape characteristics for runoff generation of boreal streams[J]. Journal of Hydrology, 2007, 344(3): 198-209.
    [32] SHANLEY J B, KENDALL C, SMITH T E, et al. Controls on old and new water contributions to stream flow at some nested catchments in Vermont, USA[J]. Hydrological Processes,2002,16(3):589-609.
  • 加载中
计量
  • 文章访问数:  837
  • HTML全文浏览量:  129
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-08
  • 刊出日期:  2016-11-30

目录

    /

    返回文章
    返回